[1]陈万敏,尚振宏,刘辉.结合时空上下文信息的相关滤波目标跟踪方法[J].红外技术,2019,41(9):866-873.[doi:10.11846/j.issn.1001_8891.201909011]
 CHEN Wanmin,SHANG Zhenhong,LIU Hui.Model Complementary Target Tracking Method Using Spatio-temporal Context Information[J].Infrared Technology,2019,41(9):866-873.[doi:10.11846/j.issn.1001_8891.201909011]
点击复制

结合时空上下文信息的相关滤波目标跟踪方法
分享到:

《红外技术》[ISSN:1001-8891/CN:CN 53-1053/TN]

卷:
41卷
期数:
2019年第9期
页码:
866-873
栏目:
出版日期:
2019-09-20

文章信息/Info

Title:
Model Complementary Target Tracking Method Using Spatio-temporal Context Information

文章编号:
1001-8891(2019)09-0866-08
作者:
陈万敏尚振宏刘辉
昆明理工大学 信息工程与自动化学院
Author(s):
CHEN WanminSHANG ZhenhongLIU Hui
School of Information Engineering and Automation, Kunming University of Science and Technology
关键词:
目标跟踪相关滤波时空上下文自适应融合
Keywords:
object trackingcorrelation filterSpatiotemporal contextadaptive fusion
分类号:
TP391.4
DOI:
10.11846/j.issn.1001_8891.201909011
文献标志码:
A
摘要:
针对繁杂环境下目标跟踪稳定性差且易受到遮挡发生漂移的问题,提出一种结合时空上下文信息的相关滤波目标跟踪方法。该算法首先从目标和背景区域提取方向梯度直方图特征和颜色直方图特征,加权融合两种特征的相关滤波响应,建立相关滤波跟踪模型;然后利用目标的背景梯度直方图特征,基于贝叶斯框架通过最大化似然函数得到时空上下文辅助模型;最后自适应融合两种模型响应,得到目标估计位置并采用尺度估计方法解决目标尺度变化问题。在OTB-2013公开标准测试集上与基于相关滤波的运动目标跟踪方法进行了实验对比。结果表明,该算法的平均距离精度值和平均重叠精度值都优于其他算法,能够有效缓解跟踪目标由于遮挡、尺度变化、光照等因素造成的跟踪漂移状况的发生。
Abstract:
Target tracking is poor in complex environments and is vulnerable to occlusion drift; therefore, a filtering target tracking method using spatiotemporal context information is proposed here. First, the algorithm extracts the direction gradient histogram feature and the color histogram feature from the target and background regions. Then, the correlation filter response of the two features are weighed to establish the correlation filter tracking model. The background gradient histogram feature of the target is used, based on Bayesian. The framework obtains the spatio-temporal context-assisted model by maximizing the likelihood function. Finally, the two models are adaptively combined to obtain the target estimation position, and the scale estimation method is used to solve the target scale change problem. The correlation-based moving target tracking method was experimentally compared on the OTB-2013 open standard test set. The results show that the average distance precision value and average overlap precision value of the algorithm were better than other algorithms, which can effectively address the tracking drift caused by occlusion, scale change, and illumination.

参考文献/References:

[1]? 石祥滨, 张健, 代钦, 等. 采用显著性分割与目标检测的形变目标跟踪方法[J]. 计算机辅助设计与图形学报, 2016, 28(4): 645-653.
SHI Xiangbin, ZHANG Jian, DAI Qin, et al. Deformation target tracking method using significant segmentation and target detection[J]. Journal of Computer-Aided Design and Graphics, 2016, 28(4): 645-653.
[2]? 黄凯奇, 陈晓棠, 康运锋, 等. 智能视频监控技术综述[J]. 计算机学报, 2015, 20(6): 1093-1118.
HUANG Kaiqi, CHEN Xiaotong, KANG Yunfeng, et al. Overview of Intelligent Video Surveillance Technology[J]. Journal of Computer, 2015, 20(6): 1093-1118.
[3]? CHEN Z, HONG Z, TAO D J C S. An Experimental Survey on Correlation Filter-based Tracking[J]. Computer Science, 2015, 53(6025): 68-83.
[4]? Hare S, Saffari A, Torr P H S. Struck: Structured output tracking with kernels[C]//IEEE International Conference on Computer Vision, 2011: 263-270.
[5]? Zdenek Kalal, Krystian Mikolajczyk, Jiri Matas. Tracking-Learning- Detection[J]. IEEE Trans Pattern Anal Mach Intell, 2012, 34(7): 1409-1422.
[6]? MA C, XU Y, NI B, et al. When Correlation Filters Meet Convolutional Neural Networks for Visual Tracking[J]. IEEE Signal Processing Letters, 2016, 23(10): 1454-1458.
[7]? Bolme D S, Beveridge J R, Draper B A, et al. Visual object tracking using adaptive correlation filters[C]//Computer Vision and Pattern Recognition, 2010: 2544-2550.
[8]? Henriques J F, Rui C, Martins P, et al. Exploiting the Circulant Structure of Tracking-by-Detection with Kernels[M]. Springer Berlin Heidelberg, 2012: 702-715.
[9]? Henriques Joao F, Caseiro Rui, Martins Pedr, et al. High-Speed Tracking with Kernelized Correlation Filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 37(3): 583-596.
[10]? Danelljan M, Khan F S, Felsberg M, et al. Adaptive Color Attributes for Real-Time Visual Tracking[C]//IEEE Conference on Computer Vision and Pattern Recognition, 2014: 1090-1097.
[11]? Danelljan M, H?ger G, Khan F, et al. Accurate scale estimation for robust visual tracking[C]//British Machine Vision Conference, 2014: 1-5.
[12]? Bertinetto L, Valmadre J, Golodetz S, et al. Staple: Complementary Learners for Real-Time Tracking[C]//Computer Vision & Pattern Recognition, 2016: 1401-1409.
[13]? ZHANG K, LEI Z, YANG M H, et al. Fast Tracking via Spatio- Temporal Context Learning[J]. Computer Science, 2013, 8693: 127-141.
[14]? WU Y, LIM J, YANG M H. Online Object Tracking: A Benchmark[C]// Computer Vision and Pattern Recognition, 2013: 2411-2418.
[15]? 杨丽娟, 张白桦, 叶旭桢. 快速傅里叶变换FFT及其应用[J]. 光电工程, 2004, 31(z1): 1-3.
YANG Lijuan, ZHANG Baihua, YE Xuzhen. Fast Fourier Transform FFT and Its Application[J]. Optical Engineering, 2004, 31(s1): 1-3.
[16]? Viola P, Jones M J C. Rapid object detection using a boosted cascade of simple features[J]. Computer Vision and Pattern Recognition, 2001(1): 511-518.
[17]? Ramalakshmi V, Alex M G. Visual object tracking using discriminative correlation filter[C]//International Conference on Communication & Electronics Systems, 2017: 907-912.
[18]? ZHANG K, ZHANG L, LIU Q, et al. Fast Visual Tracking via Dense Spatio-temporal Context Learning[J]. European Conference on Computer Vision, 2014: 127-141.
[19]? LI Y, ZHU J. A Scale Adaptive Kernel Correlation Filter Tracker with Feature Integration[J]. European Conference on Computer Vision, 2014, 8926: 254-265.

相似文献/References:

[1]彭青艳,赵勋杰,陈家波. 跟踪窗口尺寸自适应调整的粒子滤波跟踪算法[J].红外技术,2012,34(10):568.
 PENG Qing-yan,ZHAO Xun-jie,CHEN Jia-bo. Adaptive Window Object Tracking for Particle Filter[J].Infrared Technology,2012,34(9):568.
[2]杨悦,刘兴淼,郭启旺,等.基于改进互信息的红外目标匹配跟踪算法[J].红外技术,2013,35(06):350.
 YANG Yue,LIU Xing-miao,GUO Qi-wang,et al.Infrared Object Matching Tracking Algorithm Based on Improved Mutual Information[J].Infrared Technology,2013,35(9):350.
[3]唐耀飞,李杰.基于模板相关匹配的红外目标跟踪FPGA算法实现[J].红外技术,2012,34(03):173.
 TANG Yao-fei,LI Jie.The Implementation of FPGA Based?on Template-matching Infrared Target Tracking Algorithm[J].Infrared Technology,2012,34(9):173.
[4]王明阳,裴浩东.基于TMS320F2812的多传感器目标跟踪的控制系统设计[J].红外技术,2011,33(12):687.
 WANG Ming-yang,PEI Hao-dong.Design of the Control and Fusion System of Target Tracking withMultiple Distributed Sensors Based on TMS320F2812[J].Infrared Technology,2011,33(9):687.
[5]陈义,孙小炜,李言俊.基于人眼视觉非均匀特性的实时粒子滤波跟踪方法[J].红外技术,2010,32(11):621.
 CHEN Yi,SUN Xiao-wei,LI Yan-jun.Real-time Particle Filter Tracking Method Based on Human VisionNon-uniform Characteristics[J].Infrared Technology,2010,32(9):621.
[6]张建伟,唐 黎.扩展目标跟踪中的自适应模板刷新算法研究[J].红外技术,2014,36(4):315.[doi:10.11846/j.issn.1001_8891.201404012]
 ZHANG Jian-wei,TANG Li.Adaptive Template Update Algorithm Research for Extended Object Tracking[J].Infrared Technology,2014,36(9):315.[doi:10.11846/j.issn.1001_8891.201404012]
[7]毛丽民,卢振利,浦宇欢,等.基于FPGA实现粒子滤波算法的实时细胞跟踪系统设计[J].红外技术,2014,36(5):389.[doi:10.11846/j.issn.1001_8891.201405010]
 MAO Li-min,LU Zhen-li,PU Yu-huan,et al.Design of a Real-time Cell Tracking System by Implementation of Particle Filter Algorithm with FPGA[J].Infrared Technology,2014,36(9):389.[doi:10.11846/j.issn.1001_8891.201405010]
[8]管学伟,刘先志,罗镇宝.基于区域协方差矩阵的目标跟踪方法[J].红外技术,2009,31(2):099.
 GUAN Xue-wei,LIU Xian-zhi,LUO Zhen-bao.Object Tracking Algorithm Based on Region Covariance Matrix[J].Infrared Technology,2009,31(9):099.
[9]金晓会,杨 卫,白晓方.一种用红外热像仪检测与跟踪遮挡目标的方法[J].红外技术,2014,36(8):639.[doi:10.11846/j.issn.1001_8891.201408007]
 JIN Xiao-Hui,YANG Wei,BAI Xiao-Fang.A Method Using Infrared Thermal Imager to Detect and Track Hidden[J].Infrared Technology,2014,36(9):639.[doi:10.11846/j.issn.1001_8891.201408007]
[10]李树军.基于数据关联快速算法的目标跟踪与仿真研究[J].红外技术,2008,30(五):268.
 LI Shu-jun.Research on Targets Tracking Using Fast Algorithm?for Data Association and Simulation[J].Infrared Technology,2008,30(9):268.
[11]华逸伦,石英,杨明东,等.基于背景抑制和前景抗干扰的多尺度跟踪算法[J].红外技术,2018,40(11):1098.[doi:10.11846/j.issn.1001_8891.201811014]
 HUA Yilun,SHI Ying,YANG Mingdong,et al.Multi-Scale Tracking Algorithm Based on Background Suppression and Foreground Anti-disturbance[J].Infrared Technology,2018,40(9):1098.[doi:10.11846/j.issn.1001_8891.201811014]
[12]徐 康,龙 敏.增强尺度估计的特征压缩跟踪算法[J].红外技术,2018,40(12):1176.[doi:10.11846/j.issn.1001_8891.201812010]
 XU Kang,LONG Min.Feature Compression Tracking Algorithm with Enhanced Scale Estimation[J].Infrared Technology,2018,40(9):1176.[doi:10.11846/j.issn.1001_8891.201812010]

备注/Memo

备注/Memo:
收稿日期:2019-05-04;修订日期:2019-09-08.
作者简介:陈万敏(1995-),男,甘肃白银人,硕士研究生,主要从事图像处理与模式识别的研究,E-mail:chenwan0628@163.com。
通信作者:尚振宏(1975-),男,河南三门峡人,副教授,主要从事计算机视觉与模式识别方面的研究工作,E-mail:shangzhenhong@126.com。
基金项目:国家自然科学基金项目(61462052)。

更新日期/Last Update: 2019-09-20