[1]卢虹宇,任雪潭,周洋平.固相法合成CuMn2O4红外辐射粉体研究[J].红外技术,2019,41(9):887-891.[doi:10.11846/j.issn.1001_8891.201909014]
 LU Hongyu,REN Xuetan,ZHOU Yangping.Synthesis of CuMn2O4 Infrared Radiation Powder Using a Solid Phase Method[J].Infrared Technology,2019,41(9):887-891.[doi:10.11846/j.issn.1001_8891.201909014]
点击复制

固相法合成CuMn2O4红外辐射粉体研究
分享到:

《红外技术》[ISSN:1001-8891/CN:CN 53-1053/TN]

卷:
41卷
期数:
2019年第9期
页码:
887-891
栏目:
出版日期:
2019-09-20

文章信息/Info

Title:
Synthesis of CuMn2O4 Infrared Radiation Powder Using a Solid Phase Method
文章编号:
1001-8891(2019)09-0887-05
作者:
卢虹宇任雪潭周洋平
西南科技大学 材料科学与工程学院
Author(s):
LU HongyuREN XuetanZHOU Yangping
School of Materials Science and Engineering, Southwest University of Science and Technology
关键词:
红外辐射发射率固相烧结CuMn2O4尖晶石
Keywords:
infrared radiationinfrared emissivitysolid phase sinteringCuMn2O4spinel
分类号:
TQ174.652
DOI:
10.11846/j.issn.1001_8891.201909014
文献标志码:
A
摘要:
以CuO、MnO2为原料,采用固相反应法制备CuMn2O4尖晶石红外辐射粉体,通过XRD、SEM、FT-IR、TSS-5X红外发射率测量仪等测试手段对样品显微结构、物相组成和红外辐射性能进行了表征。结果表明:烧结温度在1050℃时,随着CuO含量的增加Cu2+将以四面体的形式存在于CuMn2O4尖晶石中。从XRD、红外光谱中能发现晶格常数常数先增加后减小,其红外发射率也先增加后降低。当体系中CuO含量为30%时,晶格常数增加至最大,样品的红外平均发射率达到最大0.92。继续提高合成温度,红外发射率从0.92下降到0.90。
Abstract:
Using CuO and MnO2 as raw materials, we prepared CuMn2O4 spinel infrared radiation powder using a solid phase reaction method. The microstructure, phase composition, and new infrared radiation energy of the sample were characterized by X-ray diffraction (XRD), scanning electron microscopy, Fourier-transform infrared spectroscopy (FT-IR), a TSS-5X infrared emissivity measuring instrument, and other test methods. The results showed that when the sintering temperature is 1050℃, with an increase in CuO content, Cu2+ will exist in the form of a tetrahedron CuMn2O4 spinel. XRD and FT-IR observations revealed that both the lattice constant and its infrared emissivity first increase and then decrease. When the CuO content in the system is 30%, the lattice constant increases to the maximum, and the average infrared emissivity of the sample reaches the maximum of 0.92. When the synthesis temperature continues to increase, the infrared emissivity decreases from 0.92 to 0.90.

参考文献/References:

[1]? Bird R K, Wallace T A, Sankaran S N. Development of protective coatings for high-temperature metallic materials[J]. Journal of Spacecraft and Rockets, 2004, 41(2): 213-220.
[2]? WU X, YU H, DONG H, et al. Enhanced infrared radiation properties of CoFe2O4 by single Ce3+doping with energy-efficient preparation[J]. Ceramics International, 2014, 40(4): 5905-5911.
[3]? LU L, FAN Xian, ZHANG J, et al. Evolution of structure and infrared radiation properties for ferrite-based amorphous coating[J]. Applied Surface Science, 2014, 316: 82-87.
[4]? Zhikai L, QIU S , YING S , et al. High-emissivity composite-oxide fillers for high temperature stable aluminum chromium phosphate coating[J]. Surface and Coatings Technology, 2018: 72-76.
[5]? CHEN W , YE W , CHENG X , et al. Preparation, microstructure and properties of NiO-Cr2O3-TiO2infrared radiation coating[J]. Journal of Materials Science & Technology, 2009, 25(5): 695-698.
[6]? CHENG X D , MIN J , ZHU Z Q , et al. Preparation of high emissivity NiCr2O4 powders with a spinel structure by spray drying[J]. International Journal of Minerals Metallurgy and Materials, 2012, 19(2): 173-178.
[7]? ZHANG J , FAN X , LU L , et al. Ferrites based infrared radiation coatings with high emissivity and high thermal shock resistance and their application on energy-saving kettle[J]. Applied Surface Science, 2015, 344:223-229.?
[8]? ZHANG J , FAN X , LU L , et al. Plasma sprayed ferrite-based infrared radiation coating directly from transition metal oxides without high-temperature roasting[J]. Materials Letters, 2015, 161:348-351.
[9]? ZOU J, DONG S R, GAO J H, et al. Preparation and characterization of high infrared emissivity Mn-doped NCO spinel composites[J]. Journal of Wuhan University of Technology-materials Science Edition, 2017, 32(6): 1265-1270.
[10]? 张长瑞, 谢凯, 陈伟明. MnO2-CoO-CuO高温红外辐射材料的研究[J]. 红外研究, 1987(4): 65-70.
? ? ?ZHANG Changrui, XIE Kai, CHEN Weiming. Study on MnO2-CoO-CuO high temperature infrared radiation materials[J]. Infrared Study, 1987(4): 65-70.
[11]? 蓝立财, 赵韦人, 邓玲玲, 等. MnO2-Cr2O3-NiO系红外辐射材料的制备与性能研究[J]. 人工晶体学报, 2013, 42(11):2369-2374 .
LAN Licai, ZHAO Weiren, DENG Lingling, et al. Preparation and properties of MnO2-Cr2O3-NiO system infrared radiant materials[J]. Journal of Synthetic Crystals, 2013, 42(11):? 2369-2374
[12]? HOU H, XU G, TAN S, et al. A facile sol-gel strategy for the scalable synthesis of CuFe2O4, nanoparticles with enhanced infrared radiation property: influence of the synthesis conditions[J]. Infrared Physics & Technology, 2017, 85: 261-265.
[13]? DING S, MAO J, ZENG X, et al. Enhanced infrared emission property of NiCr spinel coating doped with MnO2and rare-earth oxides[J]. Surface and Coatings Technology, 2018, 344: 418-422.
[14]? 任卫. 红外陶瓷[M]. 武汉: 武汉理工大学出版社, 1999: 22-32.
REN Wei. Infrared Ceramics[M]. Wuhan: Wuhan university of technology press, 1999: 22-32
[15]? 王国梅, 万发荣. 材料物理[M]. 武汉:武汉理工大学出版社, 2004: 104-111.
WANG Guomei, WAN Farong. Material Physics[M]. Wuhan: Wuhan university of technology press, 2004: 104-111
[16]? Wolska E, Piszora P, Stempin K, et al. X-ray powder diffraction study of cation distribution and the Fd3m→P4132 symmetry reduction in Li0.5Fe2.5O4/LiMn2O4 spinel solid solutions[J]. Journal of Alloys and Compounds, 1999, 286(1-2): 203-207.
[17]? 闻辂. 矿物红外光谱学[M]. 重庆: 重庆大学出版社, 1989: 115-116.
WEN Luo. Mineral Infrared Spectroscopy[M]. Chongqing: Chongqing university press, 1989: 115-116.
[18]? 徐德龙, 谢峻林. 材料工程基础[M]. 武汉: 武汉理工大学出版社, 2008: 30-41.
XU delong, XIE Junlin. Materials Engineering Goundation[M]. Wuhan: Wuhan university of technology press, 2008: 30-41

相似文献/References:

[1]樊宏杰,陈前荣,杨淼淼,等. 不同气象条件下飞机红外辐射等效折算[J].红外技术,2012,34(11):672.
 FAN Hong-jie,CHEN Qian-rong,YANG Miao-miao,et al.Equivalent Calculation on Infrared Radiation of Airplane under Different Weather Condition[J].Infrared Technology,2012,34(9):672.
[2]龚璐,沈国土,蔡继光,等.典型物体表面温度的测量及初步计算[J].红外技术,2013,35(07):439.[doi:10.11846/j.issn.1001_8891.201307011]
 GONG Lu,SHEN Guo-tu,CAI Ji-guang,et al.Measurement and preliminary calculation of typical object surface temperature[J].Infrared Technology,2013,35(9):439.[doi:10.11846/j.issn.1001_8891.201307011]
[3]林杰,江勇,方浩百,等.飞机整机蒙皮自身红外辐射特性建模与分析[J].红外技术,2012,34(05):286.
 LIN Jie,JIANG Yong,FANG Hao-bai,et al.Modeling and Analysis on Self-Infrared Radiation Characteristics?of Whole Aircraft Skin[J].Infrared Technology,2012,34(9):286.
[4]汪卫华,李晋岭,王充,等.螺旋桨无人机三维流场数值模拟[J].红外技术,2012,34(05):292.
 WANG Wei-hua,LI Jin-ling,WANG Chong,et al.Three Dimension Flow Field Numerical Simulationfor Airscrew Unmanned Aircraft Vehicle[J].Infrared Technology,2012,34(9):292.
[5]赵楠,李晓霞,马森,等.靶机IR特性模拟技术发展现状及展望[J].红外技术,2011,33(11):625.
 ZHAO Nan,LI Xiao-xia,MA Sen,et al.Development of IR Characteristics Simulation of Target-planes[J].Infrared Technology,2011,33(9):625.
[6]陈俊,吉洪湖,斯仁,等.采用低发射率涂层的发动排气系统红外特征实验[J].红外技术,2011,33(07):395.
 CHEN Jun,JI Hong-hu,SI Ren,et al.Experiment of IR Suppression for Nozzlewith Low Infrared Emissivity Coating[J].Infrared Technology,2011,33(9):395.
[7]张明明,傅忠谦.基于OpenGL的导弹红外仿真研究[J].红外技术,2011,33(06):361.
 ZHANG Ming-ming,FU Zhong-qian.Study of Missile Infrared Simulation Based on OpenGL[J].Infrared Technology,2011,33(9):361.
[8]张亮,赵锋,王雪松.视线方向上飞机红外特性及大气衰减模型研究[J].红外技术,2011,33(06):367.
 ZHANG Liang,ZHAO Feng,WANG Xue-song.Calculation Model for Aeroplane IR Signatureand Atmospheric Attenuation Along the Line of Sight[J].Infrared Technology,2011,33(9):367.
[9]马庚军,张云飞.直升机排气系统尾焰红外辐射数值计算研究[J].红外技术,2014,36(1):058.[doi:10.11846/j.issn.1001_8891.201401010]
 MA Geng-jun,ZHANG Yun-fei.Numerical Research on Plume Infrared Radiation of Helicopter Exhaust System[J].Infrared Technology,2014,36(9):058.[doi:10.11846/j.issn.1001_8891.201401010]
[10]田先玲,李大纲,吴正元,等.木塑活动房热工缺陷的定性研究[J].红外技术,2011,33(04):241.
 TIAN Xian-ling,LI Da-gang,WU Zheng-yuan,et al.Qualitative Study on the Thermodynamic Defect ofWood-plastic Composite Prefabricated House[J].Infrared Technology,2011,33(9):241.
[11]陆 磊,樊希安,胡晓明,等.高抗热震性红外辐射节能涂层的制备与性能研究[J].红外技术,2014,36(2):156.[doi:10.11846/j.issn.1001_8891.201402014]
 LU Lei,FAN Xi-An,HU Xiao-Ming,et al.Preparation and Properties of Infrared Radiation Energy-saving Coating with High Thermal Shock Resistance[J].Infrared Technology,2014,36(9):156.[doi:10.11846/j.issn.1001_8891.201402014]
[12]顾幸勇,罗婷,张爱华,等.制备工艺对Fe2O3-MnO2-CuO系常温红外辐射材料结构及发射率的影响[J].红外技术,2007,29(8):472.
 GU Xing-yong,LUO Ting,ZHANG Ai-Hua,et al.Effects of Preparation Technologies on Emissivity and Structure of Fe2O3-MnO2-CuO System Normal-temperature Infrared Radiational Materials[J].Infrared Technology,2007,29(9):472.

备注/Memo

备注/Memo:
收稿日期:2019-04-26;修订日期:2019-09-04.
作者简介:卢虹宇(1993-),男,硕士研究生,主要从事红外辐射涂料的研究。E-mail:405593634@qq.com。
通信作者:任雪潭(1975-),男,博士,副教授,主要从事核废物固化处理材料,节能材料与节能技术。E-mail:mullite@126.com。
基金项目:广东省应用型科技研发专项(2016B090932002)。

更新日期/Last Update: 2019-09-20