[1]朱翔翔,郭永洪.基于多尺度自适应的近红外手肘静脉提取算法[J].红外技术,2020,42(5):494-500.[doi:10.11846/j.issn.1001_8891.202005013]
 ZHU Xiangxiang,GUO Yonghong.Near-Infrared Elbow Vein Extraction Algorithm Based on Multiscale Adaptive Filter[J].Infrared Technology,2020,42(5):494-500.[doi:10.11846/j.issn.1001_8891.202005013]
点击复制

基于多尺度自适应的近红外手肘静脉提取算法
分享到:

《红外技术》[ISSN:1001-8891/CN:CN 53-1053/TN]

卷:
42卷
期数:
2020年第5期
页码:
494-500
栏目:
出版日期:
2020-05-23

文章信息/Info

Title:
Near-Infrared Elbow Vein Extraction Algorithm Based on Multiscale Adaptive Filter

文章编号:
1001-8891(2020)05-0494-07
作者:
朱翔翔郭永洪
中国计量大学机电工程学院
Author(s):
ZHU XiangxiangGUO Yonghong
College of Mechanical and Electrical Engineering, China Jiliang University
关键词:
手肘静脉图像CLAHEHessian矩阵多尺度自适应滤波静脉提取
Keywords:
elbow vein image CLAHE Hessian matrix multi-scale adaptive filter vein extraction
分类号:
TP391
DOI:
10.11846/j.issn.1001_8891.202005013
文献标志码:
A
摘要:
由于成像质量不高,光照强度不均匀,皮下脂肪较厚等因素,近红外手肘静脉图像对比度较低,不易提取到清晰的静脉结构。针对该问题,本文提出了一种基于Hessian算子的多尺度自适应静脉滤波提取方法。该方法通过改进的多尺度自适应滤波器从对比度限制自适应直方图均衡化(Contrast-Limited Adaptive Histogram Equalization,CLAHE)增强后的图像中提取静脉。新的滤波器结构能够根据输入图像自适应地确定滤波器参数,在提取静脉的同时抑制噪声。实验结果表明该方法可以有效地获得清晰完整的静脉结构,具有更强的去噪和增强效果以及更高的准确率。
Abstract:
A near-infrared elbow vein image has low contrast because of low image quality, uneven illumination intensity, and thicker subcutaneous fat. Therefore, it is difficult to extract a clear vein structure. To address this problem, a multiscale adaptive vein filtering enhancement method based on the Hessian operator is proposed. The method extracts veins from an image enhanced by contrast-limited adaptive histogram equalization with the use of an improved multiscale adaptive filter. The new filter structure can adaptively determine filter parameters based on the input image and suppress noise while extracting veins. The experimental results show that the method can effectively obtain a clear and complete vein structure, and it has stronger denoising, better enhancement effects, and higher accuracy.

参考文献/References:

[1]? 李威, 苑玮琦. 不同波长近红外光下手掌静脉图像质量分析[J]. 计算机工程与应用, 2011, 47(30): 15-18.
LI Wei, YUAN Weiqi. Image quality analysis of palm veins under different wavelengths of near-infrared light[J]. Computer Engineering and Applications, 2011, 47(30): 15-18.
[2]? 朱丛虎, 王华彬, 陶亮. 低对比度手背静脉图像的增强和分割[J]. 计算机技术与发展, 2011, 21(5): 52-55+59.
ZHU Conghu, WANG Huabin, TAO Liang. Enhancement and segmentation of low-contrast dorsal vein image[J]. Computer Technology and Development, 2011, 21(5): 52-55+59.
[3]? 郑均辉, 甘泉. NIBLACK 改进算法在手指静脉识别中的应用研究[J]. 微型电脑应用, 2015, 31(5): 36-38.
ZHENG Junhui, GAN Quan. Research on Application of Improved NIBLACK Algorithm in Finger Vein Recognition[J]. Microcomputer Applications, 2015, 31(5): 36-38.
[4]? Chakraborti T, Jha D K, Chowdhury A S, et al. A self-adaptive matched filter for retinal blood vessel detection[J]. Machine Vision and Applications, 2015, 26(1): 55-68.
[5]? YANG J, MA S, SUN Q, et al. Improved Hessian multiscale enhancement filter[J]. Bio-medical materials and engineering, 2014, 24(6): 3267-3275.
[6]? SUN T, SUN N, WANG J, et al. Iterative CBCT reconstruction using Hessian penalty[J].Physics in Medicine & Biology, 2015, 60(5): 1965.
[7]? ZHU C, WANG X, CHEN S, et al. Automatic centerline extraction of cerebrovascular in 4D CTA based on tubular features[J]. Physics in Medicine & Biology, 2018, 63(12): 125-129.
[8]? LIU J, FANG N, XIE Y J, et al. Scale-space theory-based multi-scale features for aircraft classification using HRRP[J]. Electronics Letters, 2016, 52(6): 475-477.
[9]? WANG H, JIANG Y, JIANG X, et al. Automatic vessel segmentation on fundus images using vessel filtering and fuzzy entropy[J]. Soft Computing, 2018, 22(5): 1501-1509.
[10]? 丘立, 蒋先刚, 熊娟. 基于Hessian算子的多尺度视网膜血管增强滤波方法[J]. 计算机应用与软件, 2014, 31(9): 201-205.
QIU Li, JIANG Xiangang, XIONG Juan. Multi-scale retinal vascular enhancement filtering method based on Hessian operator[J]. Computer Applications And Software, 2014, 31(9): 201-205.
[11]? 张新红, 张帆, 崔延斌. 基于多尺度自适应滤波的DSA血管增强[J]. 计算机工程与应用, 2015, 51(14): 179-185.
ZHANG Xinhong, ZHANG Fan, CUI Yanbin. DSA vascular enhancement based on multi-scale adaptive filtering[J]. Computer Engineering and Applications, 2015, 51(14): 179-185.
[12]? Frangi A F, Niessen W J, Vincken K L, et al. Multiscale vessel enhancement filtering[C]//International Conference on Medical Image Computing and Computer-assisted Intervention, 1998: 130-137.
[13]? Gonzalez R C, Woods R E. Digital Image Processing[M]. Publishing house of electronics industry, 2002: 72-73.
[14]? 张平. Opencv算法精解:基于Python与C++[M]. 北京: 电子工业出版社, 2017: 118-119.
ZHANG Pin. Opencv Algorithm Solution: Based on Python and C++[M]. BeiJing: Electronic Industry Press, 2017: 118-119.
[15]? Singh R P, Dixit M. Histogram equalization: a strong technique for image enhancement[J]. International Journal of Signal Processing, Image Processing and Pattern Recognition, 2015, 8(8): 345-352.
[16]? 王定汉, 冯桂兰, 王雄, 等. 基于静脉灰度值特征的图像分割算法研究[J]. 光电工程, 2018, 45(12): 15-21.
WANG Dinghan, FENG Guilan, WANG Xiong, et al. Research on Image Segmentation Algorithm Based on Vein Gray Value Feature[J]. Optoelectronic Engineering, 2018, 45(12): 15-21.
[17]? Pont-Tuset J, Marques F. Supervised evaluation of image segmentation and object proposal techniques[J]. IEEE transactions on pattern analysis and machine intelligence, 2015, 38(7): 1465-1478.
[18]? Jyothirmayi T, Rao K S, Rao P S, et al. Performance evaluation of image segmentation method based on doubly truncated generalized Laplace Mixture Model and hierarchical clustering[J]. International Journal of Image, Graphics and Signal Processing, 2017, 9(1): 41-45.

备注/Memo

备注/Memo:
收稿日期:2019-04-24;修订日期:2020-04-13.
作者简介:朱翔翔(1994-),男,浙江金华人,硕士研究生,研究方向为图像处理、模式识别。E-mail:zhuxiangxiang6144@gmail.com。
通信作者:郭永洪(1967-),女,副教授,博士,研究方向为检测技术、信息管理与信息系统。E-mail: guoyonghong@cjlu.edu.cn。
基金项目:国家重点研发项目(2018YFF0214700)。

更新日期/Last Update: 2020-05-19