[1]钱福丽,王光华,杨启鸣,等.顶发光单色绿光OLED微型显示器件发光层掺杂特性研究[J].红外技术,2019,41(10):913-917.[doi:doi:doi:10.11846/j.issn.1001_8891.201910004]
 QIAN Fuli,WANG Guanghua,YANG Qiming,et al.Research on the Performance of Luminescent Layer Doping in Top Emitting Monochrome Green OLED Micro-displays [J].Infrared Technology,2019,41(10):913-917.[doi:doi:doi:10.11846/j.issn.1001_8891.201910004]
点击复制

顶发光单色绿光OLED微型显示器件发光层掺杂特性研究
分享到:

《红外技术》[ISSN:1001-8891/CN:CN 53-1053/TN]

卷:
41卷
期数:
2019年第10期
页码:
913-917
栏目:
出版日期:
2019-10-21

文章信息/Info

Title:
Research on the Performance of Luminescent Layer Doping in
Top Emitting Monochrome Green OLED Micro-displays
文章编号:
1001-8891(2019)10-0913-05
作者:
钱福丽1王光华12杨启鸣1段良飞1高思博1王 灿1周允红1段 瑜12季华夏1
1. 云南北方奥雷德光电科技股份有限公司,云南 昆明 650223;2. 昆明物理研究所,云南 昆明 650223
Author(s):
QIAN Fuli1WANG Guanghua12YANG Qiming1DUAN Liangfei1GAO Sibo1WANG Can1 ZHOU Yunhong1DUAN Yu12JI Huaxia1
1. Yunman North OLiGHTEK Opto-Electronic Technology Co., Ltd, Kunming 650223, China;
2. Kunming Institute of Physics, Kunming 650223, China
关键词:
单色绿光顶发射OLED微型显示器发光层光电特性
Keywords:
monochrome green top emission OLED luminescent layer photoelectric property
分类号:
TN383.1
DOI:
doi:doi:10.11846/j.issn.1001_8891.201910004
文献标志码:
A
摘要:
本文设计了一种磷光顶发射结构制备单色高亮绿光OLED微型显示器件,器件结构为:ITO/ 2-TNATA/NPB/MCP: Ir(ppy)3/Bphen/LiF/Mg:Ag。为获得低功耗、高亮度的绿光OLED微型显示器件,采用开口率大、益于集成的顶发射结构器件,并对发光层掺杂机制进行实验研究,通过改变掺杂比例获得较佳的器件性能。研究表明,在掺杂比分别为1.0%、1.5%、1.8%、2.0%、2.3%、2.5%的绿光OLED器件中,2.0%的掺杂器件较其他比例的性能更优,通过进一步优化掺杂研究显示,发光层主体材料MCP与掺杂料Ir(ppy)3的最佳掺杂比例为1:0.02,主体材料薄膜厚度为250 Å。在20 mA/cm2的电流密度下,得到器件电压为3.62 V,亮度为4622 cd/cm2,色坐标(X,Y)为(0.33,0.61)。
Abstract:
A monochrome high brightness green top emission OLED micro-displays is designed by the phosphor emitting structure: ITO/2-TNATA/NPB/MCP:Ir(ppy)3/Bphen/LiF/Mg:Ag. The top emitting structure device with large aperture ratio and easy to integrate was prepared, exhibiting performance of low-power and high brightness. The best performance is obtained by changing the doping ratio in the luminous layer. The results showed that the 2.0% of the doped ratio is better than other ratios such as 1.0%, 1.5%, 1.8%, 2.3%, 2.5% in the green OLED micro-displays. Doped ratio is further optimized, and the best rate of the host materials MCP and doped material Ir(ppy)3 is 1:0.02, the film thickness of host material is 250 Å. When current density is 20 mA/ cm2, voltage is 3.62 V, the brightness is 4622 cd/cm2, chromaticity coordinates (CIE X, Y) (0.33, 0.61).

参考文献/References:

[1] WANG J , YU J , LI L , et al. Low roll-off power efficiency organic light-emitting diodes consisted of nondoped ultrathin phosphorescent layer[J]. Applied Physics Letters, 2008, 92(13):133308-3.
[2] Forrest S.R. The road to high efficiency organic light emitting devices[J]. Organic Electronics, 2003, 4(2): 45-48.
[3] Adachi C , Thompson M. E , Forrest S R . Architectures for efficient electrophosphorescent organic light-emitting devices[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2002, 8(2): 372-377.
[4] Kim S J, ZHANG Y D , Zuniga C, et al. Efficient green OLED devices with an emissive layer comprised of phosphor-doped carbazole/bis- oxadiazole side-chain polymer blends[J]. Organic Electronics, 2011, 12(3): 492-496.
[5] WU C, CHEN H. F , WONG K. T, et al. Study of ion-paired iridium complexes (soft salts) and their application in organic light emitting diodes[J]. Journal of the American Chemical Society, 2010, 132(9): 3133-3139.
[6] WU F I , SU H J, SHU C F , et al. Tuning the emission and morphology of cyclometalated iridium complexes and their applications to organic light-emitting diodes[J]. Journal of Materials Chemistry, 2005, 15(10): 1035-1042.
[7] CHEN C W , Hsieh P Y , Chiang H H , et al. Top-emitting organic light-emitting devices using surface-modified Ag anode[J]. Applied Physics Letters, 2003, 83(25): 5127-5129.
[8] HOU J H , WU J , XIE Z Y , et al. Realization of blue, green and red emission from top-emitting white organic light-emitting diodes with exterior tunable optical films[J]. Organic Electronics, 2008, 9(6): 959-963.
[9] WU Z , GUO H , WANG J . Highly efficient green top-emitting organic light-emitting devices with metal electrode structure[J]. Microelectronics Journal, 2007, 38(6): 686-689.
[10] Levell J , Gunning J , Burn P , et al. A phosphorescent poly(dendrimer) with increased viscosity for solution-processed OLED devices[J]. Organic Electronics, 2010, 11(9): 1561-1568.
[11] Kondakov D Y, Sandifer J R , Tang C W , et al. Nonradiative recombination centers and electrical aging of organic light-emitting diodes: Direct connection between accumulation of trapped charge and luminance loss[J]. Journal of Applied Physics, 2002, 93(2): 1108-1119.
[12] Lane P A , Palilis L C , O’Brien D. F, et al. Origin of electrophosphorescence from a doped polymer light emitting diode[J]. Physical Review B, 2001, 63(23): 235206.
[13] Baldo M A, O’Brien D F, You Y , et al. Highly efficient phosphorescent emission from organic electroluminescent devices[J]. Nature, 1998, 395(6698): 151-154.
[14] Bolink H J, Coronado E, Garcia Santamaria S, et al. Highly phosphorescent perfect green emitting iridium(iii) complex for application in OLEDs[J]. Chemical Communications, 2007, 31: 3276-3278.
[15] Jung S O, ZHAO Q, Park J W, et al. A green emitting iridium(III) complex with narrow emission band and its application to phosphorescence organic light-emitting diodes (OLEDs)[J]. Organic Electronics, 2009, 10(6): 1066-1073.
[16] SHI X , WANG J , LIU J , et al. High-performance green phosphorescent top-emitting organic light-emitting diodes based on FDTD optical simulation[J]. Organic Electronics, 2014, 15(4): 864-870.
[17] Bihai T , HAN W, MAN C , et al. High efficiency green OLEDs based on homoleptic iridium complexes with steric phenylpyridazine ligands[J]. Dalton Transactions, 2018, 47(7): 12243-12252.

备注/Memo

备注/Memo:
收稿日期:2019-04-15;修订日期:2019-08-22.
作者简介:钱福丽(1990-),女,云南昆明人,硕士,工程师,主要从事OLED器件开发。E-mail:qianfuli@oleid.com。
通信作者:段瑜(1981-),女,云南曲靖人,硕士,研究员级高级工程师,主要从事OLED器件开发。E-mail:duanyu@oleid.com。
基金项目:国家自然科学基金项目(61604064);云南省应用基础研究面上项目(2016FB112);云南省技术创新人才培养项目(2017HB111)。
更新日期/Last Update: 2019-10-23