[1]蒋强,俞跃,叶凌伟,等.基于修正自相关算法的THz-TDS聚乙烯测厚反卷积算法[J].红外技术,2020,42(5):473-482.[doi:10.11846/j.issn.1001_8891.202005010]
 JIANG Qiang,YU Yue,YE Lingwei,et al.Deconvolution Algorithm of THz-TDS Polyethylene Thickness Measurement Based on Modified Autocorrelation Algorithm[J].Infrared Technology,2020,42(5):473-482.[doi:10.11846/j.issn.1001_8891.202005010]
点击复制

基于修正自相关算法的THz-TDS聚乙烯测厚反卷积算法
分享到:

《红外技术》[ISSN:1001-8891/CN:CN 53-1053/TN]

卷:
42卷
期数:
2020年第5期
页码:
473-482
栏目:
出版日期:
2020-05-23

文章信息/Info

Title:
Deconvolution Algorithm of THz-TDS Polyethylene Thickness Measurement Based on Modified Autocorrelation Algorithm

文章编号:
1001-8891(2020)05-0473-10
作者:
蒋强12俞跃3叶凌伟12郝元4
1. 浙江省特种设备科学研究院;2. 浙江省特种设备安全检测技术研究重点实验室;
3. 中国特种设备检测研究院;4. 中国计量大学

Author(s):
JIANG Qiang12YU Yue3YE Lingwei12HAO Yuan4
1. Zhejiang Special Equipment Science Research Institute;?
2. Zhejiang Key Laboratory of Special Equipment Safety Testing Technology Research;
3. China Special Equipment Inspection Institute;
?4.China Measurement University

关键词:
太赫兹反卷积信号表征自相关函数信噪比
Keywords:
terahertz Gaussian filter deconvolution signal characterization improved autocorrelation function signal to noise ratio
分类号:
TB324
DOI:
10.11846/j.issn.1001_8891.202005010
文献标志码:
A
摘要:
在聚乙烯材料管道生产制造过程中,管道厚度精确测量是影响管道生产质量的一个重要技术问题,太赫兹非金属厚度透射测量过程中,通过测量两次透射信号的光程时间差与材料折射率计算得到样品厚度参数,为了准确提取两次透射信号的光程时间差值,需要对原始时域信号进行信号表征。通过高斯滤波反卷积得到脉冲响应函数表征时域信号已经成为了一种成熟且有效的技术手段。但一方面由于太赫兹波在聚乙烯材料中的传播存在明显的频散现象,同时其透射率高回波信号较弱,导致信噪比较低,在脉冲响应函数提取过程中放大了干扰信号的比重,造成信号失真、淹没,无法准确提取信号。本文通过对带通滤波后的时域信号采用修正型自相关算法进行自相关性分析,再结合高斯滤波反卷积运算,得到改进后的脉冲响应函数。旨在解决太赫兹非金属测量领域时域信号表征问题。改进算法实验结果显示加强了信号的清晰度,解决了因杂波信号干扰造成的脉冲响应信号失真或淹没情况,显著提高了脉冲响应信号信噪比。
Abstract:
?In polyethylene pipe manufacturing processes, the precise measurement of the pipe thickness is an important technical problem, which affects the quality of the pipes produced. In the terahertz non-metal thickness transmission measurement process, the sample thickness parameter is obtained by measuring the optical path time difference of the two transmitted signals and material refractive index. To accurately extract the optical path time difference of the two transmitted signals, signal characterization of the original time domain signal is required, which is a mature and effective technical means to characterize the signals impulse response functions. An impulse response function can be obtained using a deconvolution technique. However, when the echo signal is weak or the system signal-to-noise ratio is low, the interference signal increases, causing distortion and flooding of the signal, and thus, the signal cannot be accurately extracted. In this study, we first pre-process the time domain signal with a Butterworth filter and perform an improved self-precision analysis on the processed signal. Second, we perform Gaussian deconvolution processing for autocorrelation signals. Finally, we obtain an improved impulse response function. The improved method aims to solve the problem of signal characterization in the field of terahertz non-metal measurement. The improved algorithm enhances the clarity of the signal and solves the distortion or flooding of the impulse response signal caused by the interference of the clutter signal. Consequently, the signal-to-noise ratio of the impulse response signal is improved.

参考文献/References:

刘庆兆. 脉冲辐射场诊断技术[M]. 北京: 科学出版社, 1994.
LIU Qingzhao. Pulse Radiation Field Diagnosis Technology[M]. Beijing: Science Press, 1994.
[2] John G P, Dimitris G M. 数字信号处理: 原理、算法与应用[M]. 张晓林, 译. 北京: 电子工业出版社, 2004 .
John G P, Dimitris G M. Digital Signal Processing: Principles, Algorithms and Applications[M]. Translated by ZHANG Xiaolin. Beijing: Electronics Industry Press, 2004.
[3] Duvillaret L, Garet F, Coutaz J. Highly precise determination of optical constants and sample thickness in terahertz time-domain spectroscopy[J]. Appl. Opt., 1999, 38(2): 409-415.
[4] 王秀敏. 太赫兹光谱分析中用误差理论确定样品厚度的研究[J]. 激光与红外, 2009, 39(8): 884-886.
WANG Xiumin. Study on the determination of sample thickness using error theory in terahertz spectrum analysis[J]. Laser and Infrared, 2009, 39(8): 884-886.
[5] 李丽娟, 周明星, 任姣姣. 基于太赫兹时域光谱的胶层厚度均匀性检测[J]. 激光与红外, 2014, 44(7): 801-804.
LI Lijuan, ZHOU Mingxing, REN Ye. Detection of uniformity of adhesive layer thickness based on terahertz time domain spectroscopy[J]. Laser and Infrared, 2014, 44(7): 801-804.
[6] 陆庆华, 陈玉洁, 严盈富. 薄膜包衣厚度测量方法分析[J]. 南昌航空大学学报, 2014, 28(4): 76-82.
LU Qinghua, CHEN Yujie, YAN Yingfu. Analysis of measurement methods of film coating thickness[J]. Journal of Nanchang Hangkong University, 2014, 28(4): 76-82.
[7] 寇宽, 赵国忠, 刘英. 利用太赫兹时域光谱同时确定样品厚度和折射率[J]. 中国激光, 2015, 42(8): 0815001.1-081500.6.
KOU Kuan, ZHAO Guozhong, LIU Ying. Simultaneous determination of sample thickness and refractive index using terahertz time domain spectroscopy[J]. China Laser, 2015, 42(8): 0815001.1-081500.6.
[8] 刘子烨, 刘建军, 洪治. 基于光子混频连续太赫兹波的厚度检测[J]. 激光技术, 2016, 40(4): 496-499.
LIU Zizhen, LIU Jianjun, HONG Zhi. Thickness detection of continuous terahertz waves based on photon mixing[J]. Laser Technology, 2016, 40(4): 496-499.
[9] Zeiler MD, Krishnan D, Taylor GW, et al. Deconvolutional networks[C]//Computer Vision and Pattern Recognition (CVPR), IEEE, 2010: 2528-2535.
[10] Zeiler M D, Taylor G W, Fergus R. Adaptive deconvolutional networks for mid and high level feature learning[C]//Computer Vision (ICCV), IEEE, 2011: 2018-2025.
[11] 蔡川, 李旭光, 尹毅, 等. 空间电荷测量信号恢复中的频域反卷积技术及实现[J]. 电工技术学报, 2009, 24(10): 165-169.
CAI Chuan, LI Xuguang, YIN Yi, et al. Frequency domain deconvolution technology and implementation in space charge measurement signal recovery[J]. Electrical Engineering Technology Journal, 2009, 24(10): 165-169.
[12] 吴超一, 钟力生, 王霞, 等. 脉冲电声法空间电荷测量波形恢复的数据处理[J]. 中国电机工程学报, 2005(16): 137-140.
WU Chaoyi, ZHONG Lisheng, WANG Xia, et al. Data Processing of Waveform Recovery of Pulsed Electroacoustic Space Charge Measurement[J]. Transactions of China Electrical Engineering, 2005(16): 137-140.
[13] Tanaka Y, Hanawa K, Suzuki K, et al. Attenuation recovery technique for acoustic wave propagation in PEA method[C]//Electrical Insulating Materials, Proceedings of 2001 International Symposium on, 2001: 407-410.
[14] 刘明亮, 蔡永泉, 饶敏, 等. 用卷积运算实现反卷积[J]. 电子学报, 2000(5): 111-112.
LIU Mingliang, CAI Yongquan, RAO Min, et al. Deconvolution with Convolution Operation[J]. Chinese Journal of Electronics, 2000(5): 111-112.
[15] 邱程, 付红卫, 王欣, 等. 反卷积算法在超宽带时域测量中的应用[J]. 探测与控制学报, 2013, 35(3): 80-84.
QIU Cheng, FU Hongwei, WANG Xin, et al. Application of deconvolution algorithm in ultra-wideband time domain measurement[J]. Journal of Detection and Control, 2013, 35(3): 80-84.
[16] Parruck B, Riad S M. An optimization criterion for iterative deconvolution[J]. IEEE Transactions on Instrumentation and Measurement, 1983, 32(1): 137-140.?
[17] 扈罗全, 郑飞虎, 张冶文. 用于电介质中空间电荷分布测量的Tikhonov反卷积算法[J]. 计算物理, 2004(5): 432-438.
LUO Luoquan, ZHENG Feihu, ZHANG Yewen. Tikhonov deconvolution algorithm for measuring space charge distribution in dielectrics[J]. Computational Physics, 2004(5): 432-438.
[18] 姚若河. 时域卷积反演的一个新算法[J]. 桂林电子工业学院学报, 1988(2): 38-42.
YAO Ruohe. A New Algorithm for Time Domain Convolution Inversion[J]. Journal of Guilin Institute of Electronics Technology, 1988(2): 38-42.
[19] 高晋占. 微弱信号检测[M]. 北京: 清华大学出版社, 2004.
GAO Jinzhan. Weak Signal Detection[M]. Beijing: Tsinghua University Press, 2004.
[20] 许峰, 李开成, 王可. 一种基于相关算法的电能质量信号定位方法[J].电测与仪表, 2015, 52(3):1-5.
XU Feng, LI Kaicheng, WANG Ke. A Power Quality Signal Positioning Method Based on Correlation Algorithm[J]. Electrical Measurement &Instrumentation, 2015, 52(3): 1-5.
[21] 胡大红, 姚志鹏. 自相关函数在时间序列模型识别中的应用[J]. 襄樊学院学报, 2011, 32(5): 15-18.
HU Dahong, YAO Zhipeng. Application of autocorrelation function in time series model identification[J]. Journal of Xiangfan University, 2011, 32(5): 15-18.
[22] 刘正平, 臧观建, 陈俊杰. 微弱周期脉冲信号的自相关-混沌系统联合检测方法[J]. 噪声与振动控制, 2007(5): 63-65.
LIU Zhengping, ZANG Guanjian, CHEN Junjie. Auto-correlation-chaotic system detection method for weak periodic pulse signal[J]. Noise and Vibration Control, 2007(5): 63-65.
[23] 吕文秋. 强噪声中周期信号的数字重相关检测[J]. 厦门大学学报: 自然科学版, 1990, 29(1): 34-38.
LYU Wenqiu. Digital recorrelation detection of periodic signals in strong noise[J]. Journal of Xiamen University: Natural Science Edition, 1990, 29(1): 34-38.
[24] 范晓志, 王长广, 黄晓红, 等. 基于小波分析和多重自相关法的微弱信号检测技术[J]. 计算机应用与软件, 2007, 24(5):40-41, 44.
FAN Xiaozhi, WANG Changguang, HUANG Xiaohong, et al. Weak signal detection technology based on wavelet analysis and multiple autocorrelation methods[J]. Computer Applications and Software, 2007, 24(5): 40-41.

相似文献/References:

[1]魏华.?太赫兹探测技术发展与展望[J].红外技术,2010,32(4):231.
 WEI Hua.The Prospects for T-Hz Detection Techniques Development[J].Infrared Technology,2010,32(5):231.
[2]王连胜,夏冬艳,丁学用,等.太赫兹波段双宽带极化无关超材料吸波体的设计研究[J].红外技术,2016,38(7):607.[doi:10.11846/j.issn.1001_8891.201607014]
 WANG Liansheng,XIA Dongyan,DING Xueyong,et al.The Design Research of Dual Wideband Polarization-independent Metamaterials Absorber in the THz Band [J].Infrared Technology,2016,38(5):607.[doi:10.11846/j.issn.1001_8891.201607014]
[3]潘武,张俊,余璇,等.太赫兹波段Y滤波器的[J].红外技术,2017,39(2):189.[doi:10.11846/j.issn.1001_8891.201702015]
 PAN Wu,ZHANG Jun,YU Xuan,et al.Design and Analysis of Y-typed Hexagonal Ring Filter in THz Region[J].Infrared Technology,2017,39(5):189.[doi:10.11846/j.issn.1001_8891.201702015]
[4]杨竞帆.太赫兹及红外吸波超材料研究进展[J].红外技术,2017,39(4):323.[doi:10.11846/j.issn.1001_8891.201704006]
 YANG Jingfan,QU Shaobo,PANG Yongqiang,et al.Development of THz and infrared metamaterial absorbers[J].Infrared Technology,2017,39(5):323.[doi:10.11846/j.issn.1001_8891.201704006]
[5]潘武,李选,尹霞,等.L型波纹太赫兹喇叭天线[J].红外技术,2017,39(5):475.[doi:10.11846/j.issn.1001_8891.201705015]
 PAN Wu,LI Xuan,YIN Xia,et al.THz Horn Antenna with L Type Corrugation[J].Infrared Technology,2017,39(5):475.[doi:10.11846/j.issn.1001_8891.201705015]
[6]刘陵玉,常天英,杨传法.太赫兹时域光谱技术检测复合材料与金属的脱粘缺陷[J].红外技术,2018,40(1):079.[doi:10.11846/j.issn.1001_8891.201801014]
 LIU Lingyu,CHANG Tianying,YANG Chuanfa.Detection of the Debonding Defect between a Composite Material and Metal Based on Terahertz Time-Domain Spectroscopy[J].Infrared Technology,2018,40(5):079.[doi:10.11846/j.issn.1001_8891.201801014]
[7]郝元,俞 跃,王 强,等.聚乙烯材料厚度的太赫兹检测实验分析[J].红外技术,2018,40(2):183.[doi:10.11846/j.issn.1001_8891.201802014]
 HAO Yuan,YU Yue,WANG Qiang,et al.Experimental Analysis of Terahertz Detection of Polyethylene Thickness[J].Infrared Technology,2018,40(5):183.[doi:10.11846/j.issn.1001_8891.201802014]
[8]吴 刚,唐利斌,郝 群,等.非制冷太赫兹成像探测技术研究进展[J].红外技术,2018,40(6):513.[doi:10.11846/j.issn.1001_8891.201806001]
 WU Gang,TANG Libin,HAO Qun,et al.Research Progress in the Uncooled Terahertz Imaging Detection Technology[J].Infrared Technology,2018,40(5):513.[doi:10.11846/j.issn.1001_8891.201806001]
[9]潘武,闫彦君,沈大俊.基于类电磁诱导透明的太赫兹超材料传感器性能分析[J].红外技术,2018,40(7):707.[doi:10.11846/j.issn.1001_8891.201807015]
 PAN Wu,YAN Yanjun,SHEN Dajun.Performance Analysis of Terahertz Metamaterial Sensor Based on Electromagnetically Induced Transparency[J].Infrared Technology,2018,40(5):707.[doi:10.11846/j.issn.1001_8891.201807015]

备注/Memo

备注/Memo:
收稿日期:2019-04-14;修订日期:2020-04-02.
作者简介:蒋强(1992-),男,硕士,主要从事太赫兹无损检测技术与信号处理。E-mail: 1125138001@qq.com。
基金项目:国家重点研发计划项目(2017YFF0209704)。

更新日期/Last Update: 2020-05-19