[1]赵婷婷,牛武斌,李良超,等.海面上舰船目标的紫外散射特性研究[J].红外技术,2019,41(8):719-725.[doi:10.11846/j.issn.1001_8891.201908005]
 ZHAO Tingting,NIU Wubin,LI Liangchao,et al.Study on Ultraviolet Scattering Characteristics of Ship Targets on the Sea Surface[J].Infrared Technology,2019,41(8):719-725.[doi:10.11846/j.issn.1001_8891.201908005]
点击复制

海面上舰船目标的紫外散射特性研究
分享到:

《红外技术》[ISSN:1001-8891/CN:CN 53-1053/TN]

卷:
41卷
期数:
2019年第8期
页码:
719-725
栏目:
出版日期:
2019-08-21

文章信息/Info

Title:
Study on Ultraviolet Scattering Characteristics of Ship Targets on the Sea Surface
文章编号:
1001-8891(2019)08-0719-07
作者:
赵婷婷1牛武斌2李良超3李 奎3段晓丽1任全年1
1. 太原工业学院 理学系,山西 太原 030008;2. 山西大学 物理电子工程学院,山西 太原 030006;
3. 西安电子科技大学 物理与光电工程学院 西安 710071
Author(s):
ZHAO Tingting1NIU Wubin2LI Liangchao3LI Kui3DUAN Xiaoli1REN Quannian1
1. Department of Science, Taiyuan Institute of Technology, Taiyuan 030008, China;
2. College of Physics and Electronic Engineering, Shanxi University, Taiyuan 030006, China;
3. School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071, China
关键词:
紫外光散射特性舰船目标双向反射分布函数海面散射
Keywords:
ultraviolet scattering ship target bidirectional reflectance distribution function sea surface scattering
分类号:
O436.2;TN971.+1
DOI:
10.11846/j.issn.1001_8891.201908005
文献标志码:
A
摘要:
基于粗糙面双向反射分布函数(BRDF)模型,考虑海面的影响,设计了海面舰船目标的紫外光散射亮度计算流程,讨论分析了海面上舰船目标对海天背景紫外辐射的散射特性。运用大气传输软件MODTRAN,计算了0.3~0.4  mm波段太阳、天空背景的紫外辐射特性;根据粗糙面散射理论,分别对海面和目标表面进行BRDF建模,并讨论了面元的光散射特性;设计了海面舰船目标的紫外光散射亮度计算流程,并利用此流程计算分析了某舰船模型的紫外光散射亮度。结果显示探测时间、探测方位、舰船表面蒙皮材料、舰船形状、海面散射等因素,都对舰船目标的紫外光散射特性产生影响,为完善舰船目标紫外辐射特性数据库提供有效依据。
Abstract:
 Based on rough surface bidirectional reflectance distribution function (BRDF) models and considering the sea surface effect, the process for estimating the ultraviolet scattering luminance of the ship target on the sea surface is designed. The ultraviolet scattering characteristics of a ship target in the sea and sky background are discussed and analyzed. First, the characteristics of ultraviolet(UV) radiation from the sun and the sky in the range of 0.3-0.4  mm are calculated using MODTRAN. Second, based on the rough surface scattering theory, the proposed models are built on the surfaces of the sea and target, and the light scattering characteristics of the surface element are discussed. Finally, the process for the estimation and analysis of the ultraviolet scattering luminance of the ship target on the sea surface is designed. The results show that the ultraviolet scattering characteristics of ship targets are affected by factors such as detection time, detection orientation, ship shape, and scattering from sea surface, skin material of the ship surface, among others and also provide for an effective basis to enhance the database of ultraviolet radiation characteristics of ship targets.

参考文献/References:

[1] 欧阳维. 中国边海防面临的安全形势与对策思考[J]. 和平与发展, 2015, 27(1): 16-28.
OU Y W. Thoughts on the security situation and countermeasures of China’s border and sea defense[J]. Peace and Development, 2015, 27(1): 16-28.
[2] Kyonng-Soo D, Jeong-Su O, Surng-Gabb J, et al. Simulation of target detection in ultraviolet and infrared bands[J]. Optical Engineering, 2001, 40(11): 2646-2654.
[3] 郑海晶, 白廷柱. 紫外告警技术现状及发展分析[J]. 红外技术, 2017, 39(9): 773-779.
ZHENG H J, BAI T ZH. Development analysis and state of ultraviolet warning technology[J]. Infrared Technology, 2017, 39(9): 773-779.
[4] 何曾文. 大气背景紫外光谱辐射特性研究[D]. 成都: 电子科技大学, 2013: 5-20.
HE Z W. Research on the Ultraviolet Spectral Radiation characteristics of Atmospheric Background[D]. Chengdu: University of Electronic Science and Technology of China, 2013: 5-20.
[5] LIU H, HU B, ZHANG L, et al. Ultraviolet radiation over China: spatial distribution and trends[J]. Renewable and Sustainable Energy Reviews, 2017, 76: 1371-1383.
[6] Ross V, Dion D, Germain D S. Experimental validation of the MODTRAN 5.3 sea surface radiance model using MIRAMER campaign measurements[J]. Applied Optics, 2012, 51(13): 2264-2276.
[7] Nicodemus F E. Reflectance nomenclature and directional reflectance and emissivity[J]. Applied Optics, 1970, 9(6): 1474-1475.
[8] Ross V, Dion D, Potvin G. Detailed analytical approach to the Gaussian surface bidirectional reflectance distribution function specular component applied to the sea surface[J]. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2005, 22(11): 2442-2453.
[9] 曹运华, 吴振森, 张涵璐, 等. 粗糙目标样片光谱双向反射分布函数的实验测量及其建模[J]. 光学学报, 2008, 28(4): 792-798.
CAO Y H, WU ZH S, ZHANG H L, et al. Experimental measurement and statistical modeling of spectral bidirectional reflectance distribution function of rough target samples[J]. Acta Optica Sinica, 2008, 28(4): 792-798.
[10] 李拓. 目标紫外光谱散射特性研究[D]. 西安: 西安电子科技大学, 2012: 9-20.
LI T. Study on Ultraviolet Spectrum Scattering Characteristics of Object[D]. Xi’an: Xidian University, 2012: 9-20.
[11] 杨敏, 李敏, 易亚星, 等. 基于OGRE的海面舰船目标红外仿真方法[J]. 激光与红外, 2017, 47(1): 53-57.
YANG M, LI M, YI Y X, et al. Infrared simulation of ship target on the sea based on OGRE[J]. Laser & Infrared, 2017, 47(1): 53-57.
[12] 王强, 郭立新. 时域混合算法在一维海面与舰船目标复合电磁散射中的应用[J]. 物理学报, 2017, 66(18): 180301.
WANG Q, GUO L X. Composite electromagnetic scattering from a ship located on one-dimensional sea surface with time-domain hybrid method[J]. Acta Physica Sinica, 2017, 66(18): 180301.
[13] LI J Y, BAI L, WU ZH S, et al. Ultraviolet scattering properties of alumina particle clusters at three phase states in aircraft plume[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 191: 40-45.
[14] 史卫朝, 郑建明, 李言, 等. 加工表面双向反射分布函数的测量与建模[J]. 光学学报, 2018, 38(10): 1029001.
SHI W CH, ZHENG J M, LI Y, et al. Measurement and modeling of bidirectional reflectance distribution function on cutting surface[J]. Acta Optica Sinica, 2018, 38(10): 1029001.
[15] 徐德伦, 于定勇. 随机海浪理论[M]. 北京: 高等教育出版社, 2001: 200-215.
XU D L, YU D Y. Theory of Random Waves[M]. Beijing: Higher Education Press, 2001: 200-215.
[16] 吴庚坤, 姬光荣, 姬婷婷, 等. 基于文氏改进谱的二维粗糙海面模型及其电磁散射研究[J]. 物理学报, 2014, 63(13): 134203.
WU G k, JI G R, JI T T, et al. Study of electromagetic scattering from two-dimensional rough sea surface based on improved Wen’s spectrum[J]. Acta Physica Sinica, 2014, 63(13): 134203.

相似文献/References:

[1]钱 昂,何友金,刘 亮.反舰导弹中波与长波红外成像制导优势对比研究[J].红外技术,2014,36(8):671.[doi:10.11846/j.issn.1001_8891.201408014]
 QIAN Ang,HE You-jin,LIU Liang.A Comparative Study of the Advantage of Infrared Imaging Guidance Anti-ship Missiles Based on Medium Wave and Long-Wave[J].Infrared Technology,2014,36(8):671.[doi:10.11846/j.issn.1001_8891.201408014]
[2]许德海,魏学明,彭垚,等.基于非完备字典的舰船特征提取和识别[J].红外技术,2016,38(9):765.[doi:10.11846/j.issn.1001_8891.201609009]
 XU Dehai,WEI Xueming,PENG Yao,et al.Feature Extraction and Recognition of Ships by an uncompleted dictionary[J].Infrared Technology,2016,38(8):765.[doi:10.11846/j.issn.1001_8891.201609009]

备注/Memo

备注/Memo:
收稿日期:2019-04-10;修订日期:2019-07-30.
作者简介:赵婷婷(1986-),女,讲师,主要研究方向:超声医学成像,目标与环境光学特性。E-mail:ting601111@163.com。
基金项目:国家自然科学基金青年基金(61405157)。
更新日期/Last Update: 2019-08-20