[1]仇国庆,王艳涛,杨海静,等.一种改进GMM-MRF模型的海上红外目标检测[J].红外技术,2020,42(1):062-67.[doi:10.11846/j.issn.1001_8891.202001009]
 QIU Guoqing,WANG Yantao,YANG Haijing,et al.An Improved GMM-MRF Model for Maritime Infrared Target Detection[J].Infrared Technology,2020,42(1):062-67.[doi:10.11846/j.issn.1001_8891.202001009]
点击复制

一种改进GMM-MRF模型的海上红外目标检测
分享到:

《红外技术》[ISSN:1001-8891/CN:CN 53-1053/TN]

卷:
42卷
期数:
2020年第1期
页码:
062-67
栏目:
出版日期:
2020-01-23

文章信息/Info

Title:
An Improved GMM-MRF Model for Maritime Infrared Target Detection
文章编号:
1001-8891(2020)01-0062-06
作者:
仇国庆王艳涛杨海静魏雅婷罗盼
重庆邮电大学 自动化学院
Author(s):
QIU GuoqingWANG YantaoYANG HaijingWEI YatingLUO Pan
College of Automation, Chongqing University of Posts and Telecommunications
关键词:
红外图像海上目标混合高斯模型马尔科夫随机场
Keywords:
infrared imagemaritime targetGaussian mixed modelMarkov random field
分类号:
TN219
DOI:
10.11846/j.issn.1001_8891.202001009
文献标志码:
A
摘要:
目前海上目标检测已在民用和军事领域得到广泛的应用。由于海水波动大、目标成像面积少、特征不显著等特点增大了目标检测难度,为了消除上述的问题,首先提出了一种基于混合高斯-马尔科夫随机场目标检测模型,该模型利用所提出的混合高斯模型自适应调节学习率来抑制动态背景的干扰。然后,利用混合高斯模型对红外图像所计算的结果作为马尔科夫随机场的观测值,建立了马尔科夫随机场模型,可以解决混合高斯模型存在的不足。实验结果表明,本文的方法能够取得良好的检测效果。
Abstract:
Currently, maritime target detection has been widely used in the civil and military fields. However, the difficulty of target detection is increased due to the large fluctuations of seawater, the small imaging area of the target, and the insignificant features. To eliminate these problems, a Gaussian mixed-Markov random field target detection model is proposed, which uses the Gaussian mixed model to adjust the learning rate and to suppress the interference of the dynamic background. Then, using the result of the Gaussian mixed model to calculate the infrared image as the observed value of the Markov random field, a Markov random field model is established. The Markov random field model can solve the existing defects of the Gaussian mixed model. The experimental results show that the method in this paper can achieve good detection results.

参考文献/References:

[1] 王文龙, 韩保君, 张红萍. 一种海空背景下红外小目标检测新算法[J]. 光子学报, 2009, 38(3): 725-728.
WANG Wenlong, HAN Baojun, ZHANG Hongping. A New Infrared Small Target Detection for Ifrared Image in background for Sea and Sky Background[J]. Acta Photonica Sinica, 2009, 38(3): 725-728.
[2] 刘博文, 戴永寿, 金久才, 等. 基于空间分布与统计特性的海面远景目标检测方法[J]. 海洋科学, 2018, 42(1): 88-92.
LIU Bowen, DAI Yongshou, JIN Jiucai, et al. Marine farsighted target-detection method based on spatial distribution and statistical characteristics[J]. Marine Sciences, 2018, 42(1): 88-92.
[3] DONG X, HUANG X, ZHENG Y, et al. A novel infrared small moving target detection method based on tracking interest points under complicated background[J]. Infrared Phys. Technol., 2014, 65: 36-42.
[4] HE Y, LI M, ZHANG J, et al. Small infrared target detection based on low-rank and sparse representation[J]. Infrared Phys. Technol., 2015, 68: 98-109.
[5] GUO J, Hsia C, LIU Y, et al. Fast Background Subtraction Based on a Multilayer Codebook Model for Moving Object Detection[C]//IEEE Transactions on Circuits and Systems for Video Technology, 2013, 23(10): 1809-1821.
[6] XUE G, SUN J, SONG L. Background subtraction based on phase and distance transform under sudden illumination change[C]//IEEE International Conference on Image Processing, 2010: 3465-3468.
[7] Aslam N, Sharma V. Foreground detection of moving object using Gaussian mixture model[C]//International Conference on Communication and Signal Processing (ICCSP), 2017: 1071-1074.
[8] Pham V, Takahashi K, Naemura T. Foreground-background segmentation using iterated distribution matching[C]//CVPR, 2011: 2113-2120.
[9] 蒋永馨, 袁群哲, 邵承永, 等. 海上远景小目标检测方法的研究[J]. 光电工程, 2011, 38(10): 46-50, 56.
JIANG Yongxin, YUAN Qunzhe, SHAO Chengyong, et al. Detection Method of Long-range Small Object at Sea[J]. Electronic Engineering, 2011, 38(10): 46-50, 56.
[10] J H Kim, J J Park, S H Ahn, et al. Small target detection using morphology and modified gaussian distance function[J]. Secur. Com-mun. Netw., 2016, 9(6): 555-560 .
[11] S Hao, X Ma, Z Fu, et al. Landing Cooperative Target Robust Detection via Low Rank and Sparse Matrix Decomposition[C]//2016 International Symposium on Computer, Consumer and Control (IS3C), 2016: 172-175.
[12] GAO Chenqiang, WANG Lan, XIAO Yongxing, et al. Infrared small-dim target detection based on Markov random field guided noise modeling[J]. Pattern Recognition, 2018, 76: 463-475.
[13] ZHANG H, SHI W, WANG Y, et al. Spatial-attraction-based Markov random field approach for classification of high spatial resolution multispectral imagery[J]. IEEE Geosci. Remote Sens. Lett., 2014, 11(2): 489-493.
[14] G Moser, S B Serpico, J A Benediktsson. Land-cover mapping by Markov modeling of spatial-contextual information in very-high-resolution remote sensing images[C]//Proc. IEEE, 2013, 101(3): 631-651.
[15] ZHAO Ji, FENG Chuang. Moving Object Detection and Segmentation Based on Adaptive Frame Difference and Level Set[J]. Information and Control, 2012, 41: 153-158.
[16] C Wang, N Komodakis, N Paragios. Markov random field modeling inference & learning in computer vision & image understanding: A survey[J]. Comput. Vis. Image Understand., 2013, 117(11): 1610-1627.
[17] L Sun, Z Wu, J Liu, et al. Supervised spectral-spatial hyperspectral image classification with weighted Markov random fields[J]. IEEE Trans. Geosci. Remote Sens., 2015, 53(3): 1490-1503.
[18] M Wei, H Chen, Q Wu, et al. Slow movement small targetdetecting method base on frame correlation[C]//Mechanic Automation and Control Engineering, 2010 International Conference on, 2010, 26-28: 4742-4744.
[19] T Bouwmans, J Gonzalez, C Shan, et al. Special issue on background modeling for foreground detection in real-world dynamic scenes[J]. Machine Vision and Applications, 2014, 25: 1101-1103.
[20] YANG Biao, ZOU Ling. Robust foreground detection using block-based RPCA[J]. Optik, 2015, 126: 4586-4590.

相似文献/References:

[1]郭水旺,王宝红,季钢,等.基于基因表达式编码算法的红外图像轮廓提取[J].红外技术,2013,35(01):038.
 GUO Shui-wang,WANG Bao-hong,JI Gang,et al. Infrared Image Contour Extraction Based on the Gene Expression Coding Algorithm[J].Infrared Technology,2013,35(1):038.
[2]孙爱平,皮冬明,安长亮,等. 光机装校阶段红外与可见光图像配准技术研究[J].红外技术,2013,35(01):050.
 SUN Ai-ping,PI Dong-ming,AN Chang-liang,et al. Study on IR/Visible Image Registration for Lens Assembly[J].Infrared Technology,2013,35(1):050.
[3]路建方,王新赛,肖志洋,等. 基于FPGA的红外图像自适应分段线性增强算法[J].红外技术,2013,35(02):102.
 LU Jian-fang,WANG Xin-sai,XIAO Zhi-yang,et al. An Adaptive Piecewise Linear Enhance Algorithm for Infrared Image Based on FPGA[J].Infrared Technology,2013,35(1):102.
[4]徐铭蔚,李郁峰,陈念年,等.多尺度融合与非线性颜色传递的微光与红外图像染色[J].红外技术,2012,34(12):722.
 XU Ming-wei,LI Yu-feng,CHEN Nian-nian,et al. Coloration of the Low Light Level and Infrared Image Using Multi-scale Fusion and Nonlinear Color Transfer Technique[J].Infrared Technology,2012,34(1):722.
[5]纪利娥,杨风暴,王志社,等. 基于边缘图像和SURF特征的可见光与红外图像的匹配算法[J].红外技术,2012,34(11):629.
 JI Li-e,YANG Feng-bao,WANG Zhi-she,et al.Visible and Infrared Image Matching Algorithm Based on Edge Image and SURF Features[J].Infrared Technology,2012,34(1):629.
[6]张红辉,罗海波,余新荣,等. 改进的神经网络红外图像非均匀性校正方法[J].红外技术,2013,35(04):232.
[7]张强,侯宁,刘红燕. 红外焦平面阵列非均匀性多点实时压缩校正研究[J].红外技术,2012,34(10):593.
 ZHANG Qiang,HOU Ning,LIU Hong-yan. Study on Real-time Multi-points Compressive Nonuniformity Correction of IRFPA[J].Infrared Technology,2012,34(1):593.
[8]路建方,王新赛,肖志洋,等. 基于灰度分层的FPGA红外图像伪彩色实时化研究[J].红外技术,2013,35(05):285.
 LU Jian-fang,WANG Xin-sai,XIAO Zhi-yang,et al. The Research on Real-time Pseudo-color of Infrared Image in FPGA Based on Gray Delaminating[J].Infrared Technology,2013,35(1):285.
[9]陈钱.红外图像处理技术现状及发展趋势[J].红外技术,2013,35(06):311.
 CHEN Qian.The Status and Development Trend of Infrared Image Processing Technology[J].Infrared Technology,2013,35(1):311.
[10]谭东杰,张安.基于局部直方图规定化的红外图像非均匀性校正[J].红外技术,2013,35(06):325.
 TAN Dong-jie,ZHANG An.Non-uniformity Correction Based on Local Histogram Specification[J].Infrared Technology,2013,35(1):325.

备注/Memo

备注/Memo:
收稿日期:2019-03-25;修订日期:2020-01-05.
作者简介:仇国庆(1963-),男,副教授,主要研究方向为智能仪器仪表及控制装置、运动控制系统,E-mail:wyt_superman@foxmail.com
基金项目:国家重点研发计划(2018YFB1702200)。

更新日期/Last Update: 2020-01-20