[1]危水根,王程伟,张聪炫,等.多信息融合的红外弱小目标检测[J].红外技术,2019,41(9):857-865.[doi:10.11846/j.issn.1001_8891.201909010]
 WEI Shuigen,WANG Chengwei,ZHANG Congxuan,et al.Infrared Dim Target Detection Based on Multi-information Fusion[J].Infrared Technology,2019,41(9):857-865.[doi:10.11846/j.issn.1001_8891.201909010]
点击复制

多信息融合的红外弱小目标检测
分享到:

《红外技术》[ISSN:1001-8891/CN:CN 53-1053/TN]

卷:
41卷
期数:
2019年第9期
页码:
857-865
栏目:
出版日期:
2019-09-20

文章信息/Info

Title:
Infrared Dim Target Detection Based on Multi-information Fusion
文章编号:
1001-8891(2019)09-0857-09
作者:
危水根1王程伟1张聪炫2鄢慧斌1
1. 南昌航空大学 信息工程学院;
2. 南昌航空大学 测试与光电工程学院
Author(s):
WEI Shuigen1WANG Chengwei1ZHANG Congxuan2YAN Huibin1
1. School of Information Engineering, Nanchang Hangkong University;
2. School of Measuring and Optical Engineering, Nanchang Hangkong University

关键词:
弱小目标检测红外图像局部梯度局部灰度背景抑制
Keywords:
dim target detectioninfrared imageslocal gradientlocal grayscalebackground suppression
分类号:
TP391.4
DOI:
10.11846/j.issn.1001_8891.201909010
文献标志码:
A
摘要:
红外弱小目标检测是图像处理的难点之一,许多研究人员提出了不少检测方法。针对复杂背景与强杂波干扰下图像信杂比(Signal-to-Clutter Ratio,SCR)低造成的目前检测方法易受伪目标干扰、虚警率高的问题,提出了一种多信息融合的红外弱小目标检测算法。首先,构建八向局部灰度残差信息图;其次,设计一个滑动窗口遍历整个图像,将图像分为一系列局部图像块,对局部图像块的强度均值进行约束,获得局部强度均值约束信息图;然后,将局部图像块进一步划分为12个方向块,对每个方向块中像素的梯度方向进行约束,获取梯度方向约束信息图;最后,上述3个信息图像通过点积运算得到最终显著图,并利用阈值分割实现弱小目标的分离。将该算法与3种其它不同算法从信杂比增益(Signal-to-Clutter Ratio Gain,SCRG)、背景抑制因子(Background Suppression Factor,BSF)以及检测率与虚警率的接受者操作特征(Receiver Operating Characteristic,ROC)曲线方面进行对比。实验结果表明:该算法具有更高的SCRG、BSF和ROC曲线下面积(Area Under the Curve,AUC),不仅能有效地抑制背景杂波、剔除伪目标,而且能准确地检测出红外弱小目标,具有较高的检测率。
Abstract:
Infrared dim target detection is a challenging task in image processing, and several researchers have proposed various methods to address this challenge. However, under conditions of complex background and strong clutter interference, because of low signal-to-clutter ratio (SCR), current detection methods are susceptible to reaching false targets and having a high false alarm rate. To resolve this problem, an infrared dim target detection algorithm based on multi-information fusion has been proposed. First, the gray residuals map was obtained by calculating the 8-directional local gray residual. Second, the image was divided into a series of local image patches by using a sliding window, followed by the intensity mean of local image patches being constrained to achieve the local intensity mean constrained map. Lastly, the local image patches were further divided into 12 directional blocks; from this, the gradient direction constrained saliency map could be obtained by constraining the gradient direction of the pixels in each directional block. The final saliency map was subsequently obtained from the aforementioned three feature maps by dot product operation, and dim targets were separated by threshold segmentation. The proposed method was compared with LCM, MPCM, and LIG algorithm based on SCRG, BSF, and ROC curves. Experimental results demonstrate that the proposed method is superior than the other above-mentioned algorithms; it can strongly suppress background clutter and eliminate false targets, therefore, it is a valuable algorithm with low false alarm rate and a high detection rate.

参考文献/References:

[1] DENG H, SUN X, LIU M, et al. Entropy-based window selection for detecting dim and small infrared targets[J]. Pattern Recognition, 2017, 61: 66-77.
[2] 宋敏敏, 王爽, 吕弢, 等. 一种天地复杂背景下的红外弱小目标检测方法[J]. 红外技术, 2018, 40(10): 996-1001.
SONG Minmin, WANG Shuang, Lü Tao, et al. A method for infrared dim small target detection in complex scenes of sky and ground[J]. Infrared Technology, 2018, 40(10): 996-1001.? ?
[3] GAO C, MENG D, YANG Y, et al. Infrared patch-image model for small target detection in a single image[J]. IEEE Trans. Image Processing, 2013, 22(12): 4996-5009.
[4] GAO C, ZHANG T, LI Q. Small infrared target detection using sparse ring representation[J]. IEEE Aerospace and Electronic Systems Magazine, 2012, 27(3): 21-30.
[5] SHI Y, WEI Y, YAO H, et al. High-Boost-Based Multiscale Local Contrast Measure for Infrared Small Target Detection[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(1): 33-37.
[6] 张世锋, 黄心汉, 王敏. 红外背景抑制与小目标检测算法[J]. 中国图象图形学报, 2016, 21(8): 1039-1047.
ZHANG Shifeng, HUANG Xinhan, WANG Min. Algorithm of infrared background suppression and small target detection[J]. Journal of Image and Graphics, 2016, 21(8): 1039-1047.
[7] 荣楚君, 曹晓光, 白相志. Facet方向导数特征与稀疏表示相结合的红外弱小目标检测算法[J]. 中国图象图形学报, 2018, 23(11): 1768-1776
RONG Chujun, CAO Xiaoguang, BAI Xiangzhi. Infrared small target detection algorithm based on derivative characteristics of Facet combined witn sparse representation[J]. Journal of Image and Graphics, 2018, 23(11): 1768-1776.?
[8] NIE J, QU S, WEI Y, et al. An infrared small target detection method based on multiscale local homogeneity measure[J]. Infrared Physics & Technology, 2018, 90: 186-194.
[9] Kim S, Yang Y, Lee J, et al. Small target detection utilizing robust methods of the human visual system for IRST[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2009, 30(9): 994-1011.
[10] CHEN C L P, LI H, WEI Y, et al. A local contrast method for small infrared target detection[J]. IEEE Trans. geoscience and remote sensing, 2014, 52(1): 574-581.
[11] WEI Y, YOU X, LI H. Multiscale patch-based contrast measure for small infrared target detection[J]. Pattern Recognition, 2016, 58: 216-226.
[12] ZHANG H, ZHANG L, YUAN D, et al. Infrared small target detection based on local intensity and gradient properties[J]. Infrared Physics & Technology, 2018, 89: 88-96.
[13] HUANG M, BAO S, QIU W. Study and simulation of surgical navigation based on binocular vision under visible light[J]. Robot, 2014, 36(4): 461-468.
[14] GAO C, WANG L, XIAO Y, et al. Infrared small-dim target detection based on Markov random field guided noise modeling[J]. Pattern Recognition, 2018, 76: 463-475.
[15] HAN J, MA Y, HUANG J, et al. An Infrared Small Target Detecting Algorithm Based on Human Visual System[J]. IEEE Geosci. Remote Sensing Lett, 2016, 13(3): 452-456.
[16] BAI X, BI Y. Derivative entropy-based contrast measure for infrared small-target detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(4): 2452-2466.
[17] GAO J, GUO Y, LIN Z, et al. Robust Infrared Small Target Detection Using Multiscale Gray and Variance Difference Measures[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 99: 1-14.

相似文献/References:

[1]郭水旺,王宝红,季钢,等.基于基因表达式编码算法的红外图像轮廓提取[J].红外技术,2013,35(01):038.
 GUO Shui-wang,WANG Bao-hong,JI Gang,et al. Infrared Image Contour Extraction Based on the Gene Expression Coding Algorithm[J].Infrared Technology,2013,35(9):038.
[2]孙爱平,皮冬明,安长亮,等. 光机装校阶段红外与可见光图像配准技术研究[J].红外技术,2013,35(01):050.
 SUN Ai-ping,PI Dong-ming,AN Chang-liang,et al. Study on IR/Visible Image Registration for Lens Assembly[J].Infrared Technology,2013,35(9):050.
[3]路建方,王新赛,肖志洋,等. 基于FPGA的红外图像自适应分段线性增强算法[J].红外技术,2013,35(02):102.
 LU Jian-fang,WANG Xin-sai,XIAO Zhi-yang,et al. An Adaptive Piecewise Linear Enhance Algorithm for Infrared Image Based on FPGA[J].Infrared Technology,2013,35(9):102.
[4]徐铭蔚,李郁峰,陈念年,等.多尺度融合与非线性颜色传递的微光与红外图像染色[J].红外技术,2012,34(12):722.
 XU Ming-wei,LI Yu-feng,CHEN Nian-nian,et al. Coloration of the Low Light Level and Infrared Image Using Multi-scale Fusion and Nonlinear Color Transfer Technique[J].Infrared Technology,2012,34(9):722.
[5]纪利娥,杨风暴,王志社,等. 基于边缘图像和SURF特征的可见光与红外图像的匹配算法[J].红外技术,2012,34(11):629.
 JI Li-e,YANG Feng-bao,WANG Zhi-she,et al.Visible and Infrared Image Matching Algorithm Based on Edge Image and SURF Features[J].Infrared Technology,2012,34(9):629.
[6]张红辉,罗海波,余新荣,等. 改进的神经网络红外图像非均匀性校正方法[J].红外技术,2013,35(04):232.
[7]张强,侯宁,刘红燕. 红外焦平面阵列非均匀性多点实时压缩校正研究[J].红外技术,2012,34(10):593.
 ZHANG Qiang,HOU Ning,LIU Hong-yan. Study on Real-time Multi-points Compressive Nonuniformity Correction of IRFPA[J].Infrared Technology,2012,34(9):593.
[8]路建方,王新赛,肖志洋,等. 基于灰度分层的FPGA红外图像伪彩色实时化研究[J].红外技术,2013,35(05):285.
 LU Jian-fang,WANG Xin-sai,XIAO Zhi-yang,et al. The Research on Real-time Pseudo-color of Infrared Image in FPGA Based on Gray Delaminating[J].Infrared Technology,2013,35(9):285.
[9]陈钱.红外图像处理技术现状及发展趋势[J].红外技术,2013,35(06):311.
 CHEN Qian.The Status and Development Trend of Infrared Image Processing Technology[J].Infrared Technology,2013,35(9):311.
[10]谭东杰,张安.基于局部直方图规定化的红外图像非均匀性校正[J].红外技术,2013,35(06):325.
 TAN Dong-jie,ZHANG An.Non-uniformity Correction Based on Local Histogram Specification[J].Infrared Technology,2013,35(9):325.
[11]王洪涛,李 丹.基于二维正态云模型算法的红外图像弱小目标检测[J].红外技术,2013,35(10):646.[doi:10.11846/j.issn.1001_8891.201310010]
 WANG Hong-tao,LI Dan.Detection of Infrared Dim and Small Target Based on Two-dimensional Normal Cloud Model Algorithm [J].Infrared Technology,2013,35(9):646.[doi:10.11846/j.issn.1001_8891.201310010]
[12]凌强,黄树彩,吴潇,等.空间自适应卷积核滤波红外弱小目标检测[J].红外技术,2015,37(一):039.[doi:10.11846/j.issn.1001_8891.201501008]
 LING Qiang,HUANG Shu-cai,WU Xiao,et al.Space-adaptive Convolution Kernel Filtering For Infrared Dim Target Detection[J].Infrared Technology,2015,37(9):039.[doi:10.11846/j.issn.1001_8891.201501008]

备注/Memo

备注/Memo:
收稿日期:2019-03-21;修订日期:2019-07-05.
作者简介:危水根(1967-),男,副教授,研究生导师,主要研究方向为图像处理与模式识别。E-mail:weishuigen@aliyun.com。
基金项目:国家自然科学基金(61772255,61866026);江西省优势科技创新团队(20152BCB24004,20165BCB19007)。

更新日期/Last Update: 2019-09-20