[1]迟国春,孙浩,王亮,等.红外探测器组件制冷参数分析[J].红外技术,2019,41(7):683-688.[doi:10.11846/j.issn.1001_8891.201907015]
 CHI Guochun,SUN Hao,WANG Liang,et al.The Analysis of Cooling Parameters of Infrared Detector Assembly[J].Infrared Technology,2019,41(7):683-688.[doi:10.11846/j.issn.1001_8891.201907015]
点击复制

红外探测器组件制冷参数分析
分享到:

《红外技术》[ISSN:1001-8891/CN:CN 53-1053/TN]

卷:
41卷
期数:
2019年第7期
页码:
683-688
栏目:
出版日期:
2019-07-20

文章信息/Info

Title:
The Analysis of Cooling Parameters of Infrared Detector Assembly
文章编号:
1001-8891(2019)07-0683-06
作者:
迟国春孙浩王亮刘湘德饶启超
华北光电技术研究所
Author(s):
CHI GuochunSUN HaoWANG LiangLIU XiangdeRAO Qicha
North China Research Institute of Electro-Optics
关键词:
红外探测器组件斯特林制冷机制冷参数
Keywords:
infrared detector assemblyStirling coolercooling parameters
分类号:
TN215
DOI:
10.11846/j.issn.1001_8891.201907015
文献标志码:
A
摘要:
全面深入了解红外探测器组件制冷需求对促进红外探测器组件应用具有重要意义。本文详细分析了红外探测器组件应用中和斯特林制冷机相关的技术参数,主要有红外探测器组件外形尺寸、重量、红外探测器工作温度、制冷时间、输入功率、控温精度、机械噪声、环境适应性和可靠性等,并结合工程实际应用,指出了红外探测器组件应用中斯特林制冷机选型要重点关注的问题以及红外探测器组件制冷参数设计方法,为更好地应用红外探测器组件提供参考。
Abstract:
The technical parameters related to Stirling coolers in infrared detector assembly are introduced in detail, including size, weight, infrared detector operating temperature, cooling time, input power, temperature control accuracy, mechanical noise, environmental adaptability, and reliability. In combination with the practical applications to projects, the key issues in selection of Stirling coolers and cooling parameters design method are pointed out. The paper provides references for better application of Stirling coolers to infrared detector assembly, and for researchers studying Stirling coolers to understand the cooling demands of infrared detector assembly.

参考文献/References:

[1]? Mai M, Rühlich I, Wiedmann Th, et al. Development trends in IR detector coolers[C]//Proceedings of the SPIE, 2009, 7298: 729819.
[2]? Lutz H, Breiter R, Rutzinger S, et al. High-performance IR detector modules for Army applications[C]//Proceedings of the SPIE, 2013, 8704: 87040A.
[3]? Uri Bin-Nun. FLIR systems submicro rotary Stirling cycle IDCA for imaging systems[C]//Proceedings of the SPIE, 2011, 8012: 80122K.
[4]? Avishai Filis, Zvi Bar Haim, Nachman Pundak, et al. Micro miniature rotary stirling cryocooler for compact, lightweight and low power thermal imaging systems[C]//Proceedings of the SPIE, 2009, 7298: 729818.
[5]? 习中立, 陈军, 陈晓屏, 等. HOT器件用自由活塞斯特林制冷机研究进展[J]. 真空与低温, 2018, 24(3): 151-156.
XI Zhongli, CHEN Jun, CHEN Xiaoping, et al. Overview of free piston Stirling cryocoolers for HOT detectors[J]. Vacuum & Cryogenics, 2018, 24(3): 151-156.
[6]? Ganot A, Pundak N. The advantages of using a digital temperature controller in a miniature Stirling cryogenic refrigerator for infrared imagers[C]//Proceedings of the SPIE, 2007, 6542: 65422L.
[7]? Alexander Veprik, Herman Vilenchik, Ramon Broyde, et al. Aural stealth of portable cryogenically cooled infrared imagers[C]//Proceedings of the SPIE, 2006, 6206: 620625.
[8]? Marianne Molina, Xavier Breniere, Philippe Tribolet. IR detector dewar and assemblies for stringent environmental conditions[C]//Proceedings of the SPIE, 2007, 6542: 65422N.
[9]? Avishai Filis, Nachman Pundak, Yoav Zur, et al. Cryocoolers for infrared missile warning systems[C]//Proceedings of the SPIE, 2010, 7660: 76602L.
[10]? Ilan Nachman, Sergey Riabzev, Avishai Filis, et al. Advanced Ricor cryocoolers for high-end IR? missile warning systems and ruggedized platforms[C]//Proceedings of the SPIE, 2015, 9451: 945124.
[11]? Xavier BRENIERE, Alain MANISSADJIAN, Michel VUILLERMET, et al. Reliability optimization for IR detectors with compact cryocoolers[C]//Proceedings of the SPIE, 2005, 5783: 578321.
[12]? 林日东, 刘伟, 王冠, 等. 红外焦平面探测器杜瓦组件真空寿命分析[J]. 激光与红外, 2011, 41(7): 779-783.
LIN Ridong, LIU Wei, WANG Guan, et al. Vacuum life analyse of infrared detector & dewar assembly[J]. Laser & Infrared, 2011, 41(7): 779-783.
[13]? Philippe Tribolet, Philippe Chorier, Stephane Dugalleix, et al. Light- weight, compact, and affordable MW TV format IR detectors[C]//Proceedings of the SPIE, 2004, 5406: 193-204.

相似文献/References:

[1]郑新波,潘鸣,裴云天.斯特林制冷机的电磁兼容性问题研究[J].红外技术,2012,34(02):114.
 ZHENG Xin-bo,PAN Ming,PEI Yun-tian.Research on EMC Problems of Stirling Cooler[J].Infrared Technology,2012,34(7):114.
[2]江重桦,陈晓屏,夏明,等.分置式斯特林制冷机气动膨胀机阶梯轴振子运动特性研究[J].红外技术,2014,36(1):068.[doi:10.11846/j.issn.1001_8891.201401012]
 JIANG Chong-hua,CHEN Xiao-ping,XIA Ming,et al.Motion Characteristics Study on the Stepped-rod Type Vibrator in Pneumatic Expander of Split-Stirling Cryocooler[J].Infrared Technology,2014,36(7):068.[doi:10.11846/j.issn.1001_8891.201401012]
[3]杜冰雁.导弹用小型低温制冷机的研究进展[J].红外技术,2010,32(9):549.
 DU Bing-yan.Development of Cyocoolers for Missile[J].Infrared Technology,2010,32(7):549.
[4]唐天敏,陈晓屏,赵玉琼,等.一种军用微型斯特林制冷机性能自动测试系统[J].红外技术,2010,32(2):105.
 TANG Tian-ming,CHEN Xiao-Ping,ZHAO Yu-qiong,et al.Design of Automatic Performance Test System for Stirling Cooler[J].Infrared Technology,2010,32(7):105.
[5]许红.美国战术用线性斯特林制冷机进展[J].红外技术,2009,31(7):420.
 XU Hong.Development of the Tactical Linear Stirling Cryocooler in USA[J].Infrared Technology,2009,31(7):420.
[6]杨少华,张晓明,刘心广,等.斯特林制冷机污染退化的加速寿命模型[J].红外技术,2008,30(八):462.
 YANG Shao-hua,ZHANG Xiao-ming,LIU Xin-guang,et al.An Accelerated Life Model for Contamination Degradation of Stirling Cryocooler[J].Infrared Technology,2008,30(7):462.
[7]陈晓屏,夏明.焦平面探测器用集成式斯特林制冷机数值模拟计算[J].红外技术,2006,28(1):054.
 CHEN Xiao-Ping,XIA Ming.Numerical Analysis of the Integration Stirling-Cycle RefrigeratorApplied to Focal Plane Array Detector[J].Infrared Technology,2006,28(7):054.
[8]夏明,陈晓屏,陈军,等.整体集成式斯特林制冷机实验研究[J].红外技术,2006,28(6):369.
 XIA Ming,CHEN Xiao-ping,CHEN Jun,et al.Experimental Study of Monobloc Stirling Cryocooler[J].Infrared Technology,2006,28(7):369.
[9]孙 皓,陈晓屏,乔 勇.小型斯特林制冷机的航空应用与发展趋势[J].红外技术,2015,37(十一):906.[doi:10.11846/j.issn.1001_8891.201511002]
 SUN Hao,CHEN Xiao-ping,QIAO Yong.A Review of Micro Stirling Cooler for Aero[J].Infrared Technology,2015,37(7):906.[doi:10.11846/j.issn.1001_8891.201511002]

备注/Memo

备注/Memo:
收稿日期:2019-03-01;修订日期:2019-04-03.
作者简介:迟国春(1977-),男,高级工程师,研究方向为斯特林制冷机技术和红外探测器组件应用。

更新日期/Last Update: 2019-07-12