[1]艾志伟,嵇建波,李 静,等.装配误差对快速反射镜控制精度影响及其抑制方法[J].红外技术,2019,41(8):705-711.[doi:10.11846/j.issn.1001_8891.201908003]
 AI Zhiwei,JI Jianbo,LI Jing,et al. Influence and Suppression of Mirror Assembly Error on Control Precision of Fast Steering Mirror [J].Infrared Technology,2019,41(8):705-711.[doi:10.11846/j.issn.1001_8891.201908003]
点击复制

装配误差对快速反射镜控制精度影响及其抑制方法
分享到:

《红外技术》[ISSN:1001-8891/CN:CN 53-1053/TN]

卷:
41卷
期数:
2019年第8期
页码:
705-711
栏目:
出版日期:
2019-08-21

文章信息/Info

Title:
 Influence and Suppression of Mirror Assembly Error on Control Precision of
Fast Steering Mirror
文章编号:
1001-8891(2019)08-0705-07
作者:
艾志伟1嵇建波1李 静1董 理2周皓阳1
1. 桂林航天工业学院,广西 桂林 541004;2. 中国科学院光电技术研究所,四川 成都 610209
Author(s):
AI Zhiwei1JI Jianbo1LI Jing1DONG Li2ZHOU Haoyang1
 1. Guilin University of Aerospace Technology, Guilin 541004, China;
2. Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
关键词:
快速反射镜装配误差干扰观测器扰动抑制
Keywords:
 fast steering mirror assembly error disturbance observer disturbance suppression
分类号:
TN219
DOI:
10.11846/j.issn.1001_8891.201908003
文献标志码:
A
摘要:
快速反射镜(fast steering mirror,FSM)的反射镜组件在装配过程中的装配误差会造成反射镜质心偏离系统几何中心,基座角运动时该装配误差会在系统中产生不平衡力矩。为了研究该力矩对快速反射镜控制系统精度的影响,建立了装配误差作用下快速反射镜控制系统的等效扰动模型,并提出了一种改进干扰观测器(disturbance observer,DOB)用于抑制该扰动。仿真结果表明,无论扰动的频率是否在系统闭环带宽的作用范围内,不平衡力矩的存在都会降低系统的跟踪精度,改进DOB环节的引入可以有效地抑制等效扰动对控制系统性能的影响,当等效扰动的频率为116 Hz时,对扰动幅值极值的抑制可达14.81%。
Abstract:
The error caused due to the assembly process in fast steering mirror (FSM) system lead to the non-coincidence between the mass center of the mirror and the geometric center of the system. This error produces an unbalanced moment when the base angle moves. To explore the impact of the assembly error on the tracking performance of the FSM control system as well as provide a viable solution to suppress this influence, an equivalent disturbance model is established. Additionally, an improving DOB is proposed to solve this disturbance. Simulation results show that the existence of unbalanced moment can reduce the tracking precision of the system no matter the frequencies of disturbance is in or out of the bandwidth of the closed loop, and the introduction of the improving DOB can effectively suppress the influence of the equivalent disturbance. When the frequency of the equivalent disturbance is 116 Hz, the suppression of extreme value of the disturbance can reach up to 14.81%.

参考文献/References:

[1] KLUK D J, BOULET M T, TRUMPER D L. A high-bandwidth, high-precision, two-axis steering mirror with moving iron actuator[J]. Mechatronics, 2012, 22: 257-270.
[2] 吴琼雁, 王强, 彭起, 等. 音圈电机驱动的快速反射镜高带宽控制[J]. 光电工程, 2004, 31(8): 15-18.
WU Qiongyan, WANG Qiang, PENG Qi, et al. Wide bandwidth control of fast-steering mirror driven by voice coil motor[J]. Opto-Electronic Engineering, 2004, 31(8): 15-18.
[3] 周向阳, 赵强. 航空遥感三轴惯性稳定平台双速度环控制[J]. 中国惯性技术学报, 2013, 21(4): 439-445.
ZHOU Xiangyang, ZHAO Qiang. Dual rate-loop control method of three-axis inertially stabilized platform for remote sensing application[J]. Journal of Chinese Inertial Technology, 2013, 21(4): 439-445.
[4] 徐新行, 杨洪波, 王兵, 等. 快速反射镜关键技术研究[J]. 激光与红外, 2013,43(10): 1095-1102.
XU Xinxing, YANG Hongbo, WANG Bing, et al. Research on key technology of fast-steering mirror[J]. Laser & Infrared, 2013, 43(10): 1095-1102.
[5] 丁科, 黄永梅, 马佳光, 等. 快速反射镜的误差自适应前馈复合控制[J]. 中国激光, 2011, 38(7): 1-6.
DING Ke, HUANG Yongmei, MA Jiaguang, et al. Error adaptive feedforward composite control of fast-steering-mirror[J]. Chinese Journal of Lasers, 2011, 38(7): 1-6.
[6] TIAN Jing, YANG Wenshu, PENG Zhenming. Application of MEMS Accelerometers and gyroscopes in fast steering mirror control systems[J]. Sensors, 2016, 16(4): DOI: 10.3390/s16040440.
[7] 彭树萍, 于洪君, 王伟国, 等. 新型快速反射镜伺服系统设计[J]. 红外与激光工程, 2014, 43(5): 1610-1615.
PENG Shuping, YU Hongjun, WANG Weiguo, et al. Design of servo system for novel fast-steering mirror[J]. Infrared and Laser Engineering, 2014, 43(5): 1610-1615.
[8] DENG Chao, TANG Tao, MAO Yao, et al. Enhanced disturbance observer based on acceleration measurement for fast steering mirror system[J]. IEEE Photonics Journal, 2017, 9(3): DOI: 10.1109/ JPHOT.2017.2695484.
[9] 林俊兰. 基于模拟电路的快速反射镜控制技术研究[D]. 北京: 中国科学院大学, 2015.
LIN Junlan. The study pf control technologies base on analog circuits for fast steering mirror[D]. Beijing: University of Chinese Academy of Sciences, 2015.
[10] 张丽敏, 郭劲. 快速反射镜双X-Y轴控制的仿真研究[J]. 光学精密工程, 2005,13(s): 142-147.
ZHANG Limin, GUO Jing. Simulative research on dual X-Y axis control of fast steering mirror[J]. Optics and Precision Engineering, 2005, 13(s): 142-147.

相似文献/References:

[1]魏文军,赵雪童.基于改进自抗扰的快速反射镜控制研究[J].红外技术,2018,40(11):1071.[doi:10.11846/j.issn.1001_8891.201811009]
 WEI Wenjun,ZHAO Xuetong.Fast Steering Mirror Control Based on Improved Active Disturbance Rejection[J].Infrared Technology,2018,40(8):1071.[doi:10.11846/j.issn.1001_8891.201811009]
[2]张 超,于 洵,马 群,等.基于FSM的Z型薄片式柔性结构力学性能分析[J].红外技术,2019,41(2):157.[doi:10.11846/j.issn.1001_8891.201902009]
 ZHANG Chao,YU Xun,MA Qun,et al.Mechanical Performance Analysis of Z-flake Flexible Structure Based on FSM[J].Infrared Technology,2019,41(8):157.[doi:10.11846/j.issn.1001_8891.201902009]

备注/Memo

备注/Memo:
收稿日期:2018-12-03;修订日期:2018-12-28.
作者简介:艾志伟(1992-),男,硕士,助教,主要研究方向为光电跟踪控制。E-mail:aizhiwei752@163.com。
基金项目:国家自然科学基金(61650103);广西高校中青年教师科研基础能力提升项目(2019KY0793)。

更新日期/Last Update: 2019-08-20