[1]赵昇,王晓荣,张进明.发酵液中甘油和丁醇含量的近红外快速检测方法[J].红外技术,2020,42(5):488-493.[doi:10.11846/j.issn.1001_8891.202005012]
 ZHAO Sheng,WANG Xiaorong,ZHANG Jinming.Rapid Detection of Glycerol and Butanol in Fermentation Broth Using Near-Infrared Spectroscopy[J].Infrared Technology,2020,42(5):488-493.[doi:10.11846/j.issn.1001_8891.202005012]
点击复制

发酵液中甘油和丁醇含量的近红外快速检测方法
分享到:

《红外技术》[ISSN:1001-8891/CN:CN 53-1053/TN]

卷:
42卷
期数:
2020年第5期
页码:
488-493
栏目:
出版日期:
2020-05-23

文章信息/Info

Title:
Rapid Detection of Glycerol and Butanol in Fermentation Broth Using Near-Infrared Spectroscopy
文章编号:
1001-8891(2020)05-0488-06
作者:
赵昇王晓荣张进明
南京工业大学 电气工程与控制科学学院
Author(s):
ZHAO ShengWANG XiaorongZHANG Jinming
College of Electrical Engineering and Control Science, Nanjing Tech University
关键词:
近红外光谱技术向后间隔偏最小二乘甘油发酵丁醇
Keywords:
near-infrared spectroscopybackward interval partial least squaresglycerol fermentationbutanol
分类号:
O657.33
DOI:
10.11846/j.issn.1001_8891.202005012
文献标志码:
A
摘要:
为了提高生物发酵过程的控制与优化水平,试对发酵底物甘油和目标产物丁醇的含量进行快速无损检测进行研究。首先对80份甘油与丁醇的单体系样本进行近红外扫描并进行光谱分析。为提高模型的预测能力,分别采用了偏最小二乘法、间隔偏最小二乘法、向前间隔偏最小二乘法、向后间隔偏最小二乘法和窗口移动最小二乘法5种定量校正方法建立甘油和丁醇含量的近红外检测模型并对模型进行分析与比较。结果表明,向后间隔偏最小二乘法建立的模型效果较好,甘油和丁醇的单组份溶液的检测模型相关系数分别达到0.99932(甘油)和0.98843(丁醇)。为测量真实的甘油发酵液中甘油和丁醇含量,搭建并建立了甘油和丁醇浓度监测平台,验证得相关系数分别达到0.99074(甘油)和0.99261(丁醇)。结果表明建立的近红外快速检测模型在检测的准确性和快速性上均有优异的性能,为发酵行业快速检测提供了新的检测手段。
Abstract:
In this paper, to improve the control and optimization of the bio-fermentation process, rapid and non-destructive detection of glycerol and butanol was studied. To this end, 80 samples of glycerol and butanol were scanned and analyzed by means of near-infrared spectroscopy. Furthermore, in order to improve the predictive ability of the model, five quantitative calibration methods, namely, the partial least squares method, interval partial least squares method, forward interval partial least squares method, backward interval partial least squares method, and minimum forward interval method were used to establish the near-infrared detection model for glycerol and butanol content. The models were then analyzed and compared. The results showed that the model established by means of the backward interval partial least squares method was effective, and the correlation coefficients of the single component solution of glycerol and butanol were 0.99932 (glycerol) and 0.98843 (butanol), respectively. To measure the content of glycerol and butanol in the glycerol fermentation broth, a monitoring platform for glycerol and butanol concentrations was established. The correlation coefficients were found to be 0.99074 (glycerol) and 0.99261 (butanol), respectively. The results show that the NIR rapid detection model demonstrates excellent performance with regards to accuracy and rapidity and provides a new detection method for the rapid detection of glycerol and butanol in the fermentation industry.

参考文献/References:

[1]? ?欧阳平凯. 发酵工程关键技术及其应用[M]. 北京: 化学工业出版社, 2005: 15-20.
OUYANG Pingkai. Key technology and application of fermentation engineering[M]. Beijing: Chemical Industry Press, 2005: 15-20.
[2]? ?宋钢, 郑璞, 倪晔, 等. 木薯发酵产丁醇的研究[J]. 生物加工过程, 2012, 10(2): 6-10.
SONG Gang, ZHEN Pu, NI Ye, et al. Study on the production of butanol from cassava[J]. Chinese Journal of Bioprocess Engineering, 2012, 10(2):6-10.
[3]? ?任东, 瞿芳芳, 陆安详, 等. 近红外光谱分析技术与应用[M]. 北京: 科学出版社, 2017.
REN Dong, QU Fangfang, LU Anxiang, et al. Near Infrared Spectroscopy Technology and Application[M]. Beijing: Science Press, 2017: 18-28.
[4]? Arnold M A, Small G W. Determination of physiological levels of glucose in an aqueous matrix with digitally filtered Fourier transform near-infrared spectra[J]. Analytical chemistry, 1990, 62(14): 1457-1464.
[5]? Macaloney G, Hall J W, Rollins M J, et al. The utility and performance of near-infra red spectroscopy in simultaneous monitoring of multiple components in a high cell density recombinant Escherichiacoli production process[J]. Bioprocess Engineering, 1997, 17(3): 157-167.
[6]? Arnold M Opiyo, Ying Tiejin. Effect of 1-Methylcy- clopropene Post-harvest Treatment on Ripening Process in Cherry Tomato Fruit[J]. Journal of Plant Physiology and Molecular Biology, 2005(1): 27-33.
[7]? ?于新洋, 卢启鹏, 高洪智, 等. 便携式近红外光谱仪器现状及展望[J]. 光谱学与光谱分析, 2013(11): 2.
YU Xinyang, LU Qipeng, GAO Hongzhi, et al. Present situation and Prospect of portable near infrared spectrometer[J]. Spectroscopy and Spectral Analysis,2013(11): 2.
[8]? 宋相中. 近红外光谱定量分析中三种新型波长选择方法研究[D]. 北京: 中国农业大学, 2017.
SONG Xiangzhong. Research of three new wavelength selection methods in near infrared spectroscopy quantitative analysis area[D]. Beijing: China Agricultural University, 2017.
[9]? 于燕波. 近红外光谱分析技术在转基因水稻识别和高油棉籽筛选中的应用研究[D]. 北京: 中国农业大学, 2014.
YU Yanbo. Application of Near Infrared Spectroscopy Analysis Technology in Transgenic Rice Identification and High Oil Cotton Seed Screening[D]. Beijing: China Agricultural University, 2014.
[10]? Davies T. Book review. Near infrared technology in the agricultural and food industries[J]. Nir News, 2002, 13(5): 7-7.
[11]? WANG Z, Felmy A R, Thompson C J, et al. Near-infrared spectroscopic investigation of water in supercritical CO2 and the effect of CaCl2[J]. Fluid Phase Equilibria, 2013, 338(4): 155-163.
[12]? M Khalique Ahmed, Jacob Levenson. Application of Near-infrared Spectroscopy to the Quality Assurance of Ethanol and Butanol Blended Gasoline[J]. Petroleum Science and Technology, 2012, 30(2): 2-5.
[13]? 邹孝恒, 郝中骐, 易荣兴, 等. 基于遗传算法和偏最小二乘法的土壤激光诱导击穿光谱定量分析研究[J]. 分析化学研究报告, 2015(2): 3.
ZOU Xiaoheng, HAO Zhongqi, YI Rongxing, et al. Quantitative Analysis of Soil by Laser-induced Breakdown Spectroscopy Using Genetic Algorithm-Partial Least Squares[J]. Chinese Journal of Analytical Chemistry, 2015(2): 3.

备注/Memo

备注/Memo:
收稿日期:2018-10-16;修订日期:2020-03-30.
作者简介:赵昇(1995-),男,江苏常州人,硕士研究生,主要从事嵌入式系统开发研究。E-mail:techmanx@163.com。
通信作者:王晓荣(1972-),男,副教授,硕士生导师,主要研究方向为分析仪器和嵌入式系统设计。E-mail:wang@njut.edu.cn。

更新日期/Last Update: 2020-05-19