[1]曹晓炜,曾 锋,张 品,等.基于椭偏角成像的识别伪装目标方法[J].红外技术,2019,41(10):924-928.[doi:doi:10.11846/j.issn.1001_8891.201910006]
 CAO Xiaowei,ZENG Feng,ZHANG Pin,et al.Method of Camouflaged Target Recognition by Imaging the Angle of Ellipsometry[J].Infrared Technology,2019,41(10):924-928.[doi:doi:10.11846/j.issn.1001_8891.201910006]
点击复制

基于椭偏角成像的识别伪装目标方法
分享到:

《红外技术》[ISSN:1001-8891/CN:CN 53-1053/TN]

卷:
41卷
期数:
2019年第10期
页码:
924-928
栏目:
出版日期:
2019-10-21

文章信息/Info

Title:
Method of Camouflaged Target Recognition by Imaging the Angle of Ellipsometry
文章编号:
1001-8891(2019)10-0924-05
作者:
曹晓炜12曾 锋1张 品3颛孙晓博3
1. 中南大学 软件学院,湖南 长沙 410083;2. 西部战区陆军保障部,甘肃 兰州 730000;
3. 陆军工程大学 野战工程学院 江苏 南京 210014
Author(s):
CAO Xiaowei12ZENG Feng1ZHANG Pin3ZHUANSUN Xiaobo3
1. Central South University, College of Software Changsha, 410083, China;
2. Western Theater Army Security Department, Lanzhou 730000, China; 3. Army Engineering University, Nanjing 210014, China
关键词:
目标识别椭偏角复折射率入射角
Keywords:
target recognition angle of ellipsometry complex refractive index angle of incidence
分类号:
O436.3
DOI:
doi:10.11846/j.issn.1001_8891.201910006
文献标志码:
A
摘要:
 偏振度的测量对反射辐射强度有一定的要求,反射辐射强度较低时,不同材料之间偏振度差别不明显,且线偏振度受探测角和表面粗糙度影响较大,以相同探测角探测粗糙度类似的目标时难以对目标从偏振度上区分。通过分析影响电磁波在物质表面反射辐射的振幅与相位因素,研究了其偏振特性,提出在线偏振光入射条件下,通过对反射辐射椭偏角成像,直接或间接辅助识别伪装目标的方法。建立椭偏角与复折射率、入射角之间的函数模型,并通过软件仿真验证模型的正确性。文章为基于探测偏振信息进行伪装识别的方法提供一种新思路。
Abstract:
 Degree of polarization(DOP) measurements have requirements regarding the intensity of reflected radiation. In the case of low reflected radiation intensity, the difference in the DOP for materials is not easily distinguishable. In addition, the linear degree of polarization largely depends on the detection angle and surface roughness; therefore, it is difficult to differentiate the degree of polarization when targets with similar surface roughness are detected at the same detection angle. By analyzing the elements affecting the reflected electromagnetic radiation amplitudes and phases on the camouflaged target surface, this article presents an investigation on the polarization character of reflected radiation using a method of direct or indirect camouflaged target recognition imaging by considering the angle of ellipsometry (AOE) under linear polarized light. The function model of the angle of incidence, complex refractive index, and AOE was first established; this model was then simulated using MATLAB. The results showed that the model was able to describe the distribution properties of AOE.

参考文献/References:

[1] 柏财勋, 李建欣, 周建强,等. 基于微偏振阵列的干涉型高光谱偏振成像方法[J]. 红外与激光工程, 2017, 46(1): 36-41.
BAI C X, LI J X, ZHOU J Q, et al. Interferometric hyperspectral polarization imaging method based on micro-polarization array[J]. Infrared and Laser Engineering, 2017, 46(1): 36-41.
[2] 刘启能, 代洪霞. 金属-光子晶体-金属结构中偏振光Tamm态的吸收特性[J]. 激光技术, 2017, 41(2): 205-209.
LIU Q N, DAI H X. Absorption properties of polarized light Tamm state in metal-photonic crystal-metal structure[J]. Laser Technology, 2017, 41(2): 205-209.
[3] 汪家春, 赵大鹏, 杜香华, 等. 基于AOTF的高光谱偏振成像系统设计与实验[J]. 红外与激光工程, 2017, 46(1): 29-35.
WANG J C, ZHAO D P, DU X H, et al. Design and experiment of hyper-spectral polarization imaging system based on AOTF[J]. Infrared and Laser Engineering, 2017, 46(1): 29-35.
[4] 颛孙晓博, 武文远, 黄雁华, 等. 基于MB模型的简化偏振BRDF模型建立与仿真[J]. 红外与激光工程, 2015, 44(3): 1098-1102.
ZHUANSUN X B, WU W Y, HUANG Y H, et al. Establishment and simulation of simplified polarimetric BRDF model based on MB model[J]. Infrared and Laser Engineering, 2015, 44(3): 1098-1102.
[5] 李芮, 李晓, 王志斌, 等. 阵列探测器在成像光谱偏振探测技术中的应用[J]. 激光技术, 2014, 38(6): 822-825.
LI R, LI X, WANG Z B. Application of array detectors in imaging spectrometer polarization detection technique[J]. Laser Technology, 2014, 38(6): 822-825.
[6] 韩志国, 李锁印, 赵琳. 一种光谱型椭偏仪的校准方法[J]. 中国测试, 2017, 43(12): 1-6.
HAN Zhiguo, LI Suoyin, ZHAO L, A calibration method for spectro- scopic ellipsometer[J]. China Measurement& Test, 2017, 43(12): 1-6.
[7] 巨海娟, 梁健, 张文飞, 等. 全偏振态同时探测实时彩色偏振成像技术[J]. 红外与毫米波学报, 2017, 36(6): 744-748.
JU H J, LIANG J, ZHANG W F, et al. Simultaneous, real-time, chromatic polarimetric imaging technology with full-polarization-state detection[J]. J. Infrared Millim Waves, 2017, 36(6): 744-748.
[8] 杨蔚, 顾国华, 陈钱, 等. 红外偏振图像的目标检测方法[J]. 红外与激光工程, 2014, 43(8): 2746-2751.
YANG W, GU G H, Method of target detection for infrared polarization image[J]. Infrared and Laser Engineering, 2014, 43(8): 2746-2751.
[9] Schott J R. Fundamentals of Polarimetric Remote Sensing[M]. Washington: SPIE, 2009: 63-106.
[10] Priest R G, Meier S R. Polarimetric microfacet scattering theory with applications to absorptive and reflective surfaces[J]. Optical Engineering, 2002, 41(5): 988-993.
[11] Ordal M A, Long L L, Bell R J, et al. Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared[J]. Applied Optics, 1983, 22(7): 1099-2000.
[12] Hsieh D, XIA Y, Wray L, et al. Observation of unconventional quantum spin textures in topological insulators[J]. Science, 2009, 323(5916): 919-22.
[13] Dovhaliuk R Y, Kisala P. Microfacet distribution function for physically based bidirectional reflectance distribution functions[C]//Proc of SPIE, 2013, 8698(1): 110-114.
[14] Nicodemus F E, Richmond J C, Hsia J J, et al. Geometrical considerations and nomenclature for reflectance[R/OL][1977-10]// http: //www.graphics.stanford.edu/courses/cs448-05-winter/papers/nicodemus -brdf-nist.pdf.
[15] Butler S D, Marciniak M A. Robust categorization of microfacet BRDF models to enable flexible application-specific BRDF adaptation[C]// Proc of SPIE, 2014: 920506.
[16] Ahmad S P, Deering D W. A simple analytical function for bidirectional reflectance[J]. Journal of Geophysical Research Atmospheres, 1992, 97(D17): 18867-18886.
[17] 支丹丹, 李健军, 高冬阳, 等. 基于旋转波片的斯托克斯参量检测与精度分析[J]. 光谱学与光谱分析, 2016, 36(8): 2655-2659.
ZHI D D, LI J J, GAO D Y. Stokes parameter detection and precision analysis based on rotating quarter-wave plate[J]. Spectroscopy and Spectral Analysis, 2016, 36(8): 2655-2659.
[18] 曾亮维, 蔡元静, 谭础深, 等. 斯托克斯光偏振态测量系统的优化[J]. 激光技术, 2017, 41(1): 74-78.
ZENG L W, CAI Y J, TAN C S, et al. Optimization of stokes optical polarization measurement system[J]. Laser Technology, 2017, 41(1): 74-78.
[19] 陈锴, 郑佳瑜, 周金海, 等. 实时快速偏振控制算法设计[J]. 激光技术, 2017, 41(5): 738-742.
CHEN K, ZHENG J, ZHOU J H, Design of real-time fast polarization control algorithm[J]. Laser Technology, 2017, 41(5): 738-742.
[20] 赵蓉, 顾国华, 杨蔚. 基于偏振成像的可见光图像增强[J]. 激光技术, 2016, 40(2): 227-231.
ZHAO R, GU G H, YANG W, Visible light image enhancement based on polarization imaging[J]. Laser Technology, 2016, 40(2): 227-231.
[21] 王彦斌, 王国良, 陈前荣, 等. 不同入射角下的激光干扰效果研究[J]. 激光技术, 2017, 41(1): 146-150.
WANG Y B, WANG G L, CHEN Q, Laser disturbing effect under different incident angles[J]. Laser Technology, 2017, 41(1): 146-150.

相似文献/References:

[1]王世亮,杨帆,张志伟,等.基于目标红外特征与SIFT特征相结合的目标识别算法[J].红外技术,2012,34(09):503.
 WANG Shi-liang,YANG Fan,ZHANG Zhi-wei,et al.A Target Recognition Method Based on Infrared Features and SIFT[J].Infrared Technology,2012,34(10):503.
[2]李雪,陈勇,贾明永.多元红外双色导引头目标识别技术研究[J].红外技术,2013,35(06):373.
 LI Xue,CHEN Yong,JIA Ming-yong.The Target Recognition Technology for Multi-Element Dual-Band IR Seeker[J].Infrared Technology,2013,35(10):373.
[3]江友谊,余瑞星,宋军艳.基于ICM的局部不变特征提取方法[J].红外技术,2012,34(03):177.
 JIANG You-yi,YU Rui-xing,SONG Jun-yan.A Novel Method based on ICM for Local Invariant Feature Extraction[J].Infrared Technology,2012,34(10):177.
[4]杨永生,王民钢,侯美婵.基于SIFT特征匹配的地面背景下目标识别方法[J].红外技术,2010,32(12):713.
 YANG Yong-sheng,WANG Min-gang,HOU Mei-chan.Ground Target Recognition Method Based on SIFT[J].Infrared Technology,2010,32(10):713.
[5]张翔.基于光谱特征增强的高光谱图像地物目标识别[J].红外技术,2010,32(12):717.
 Target Recognition of Hyperspectral Image Based?on Enhanced Spectral Characteristics[J].Infrared Technology,2010,32(10):717.
[6]郑坤鹏,王普凯,周国印,等.基于MATLAB的红外图像中坦克特征量的提取方法[J].红外技术,2010,32(11):625.
 ZHENG Kun-peng,ZHOU Guo-yin,WANG Pu-kai,et al.The Extracting Method of Tank FeatureVector from Infrared Images Based on MATLAB[J].Infrared Technology,2010,32(10):625.
[7]王会鹏,王明忠,邱康.一种烟幕遮障下的伪装目标协同识别方法[J].红外技术,2014,36(5):404.[doi:10.11846/j.issn.1001_8891.201405013]
 WANG Hui-peng,WANG Ming-zhong,QIU Kang.A Cooperative Recognition method for the Smokescreen-cover Camouflage Target[J].Infrared Technology,2014,36(10):404.[doi:10.11846/j.issn.1001_8891.201405013]
[8]项建胜,孟卫华,潘国庆.一种红外多光谱成像光学系统设计[J].红外技术,2009,31(12):683.
 XIANG Jian-sheng,MENG Wei-hua,PAN Guo-qing.A Multi-spectral Infrared Optical System[J].Infrared Technology,2009,31(10):683.
[9]李林,张河.引信用声红外复合探测识别系统研究[J].红外技术,2008,30(四):205.
 LI Lin,ZHANG He.Study on the Sound-infrared Compound Detection and Identification System for Fuze[J].Infrared Technology,2008,30(10):205.
[10]赵芹,周涛,舒勤.飞机红外图像的目标识别及姿态判断[J].红外技术,2007,29(3):167.
 ZHAO Qin,ZHOU Tao,SHU Qin.Recognition and Pose Estimation of Airplane’s Infrared Image[J].Infrared Technology,2007,29(10):167.

备注/Memo

备注/Memo:
收稿日期:2018-09-28;修订日期:2019-09-20
作者简介:曹晓炜(1983-),男,硕士,现主要从事计算机建模,光学仿真的研究。
通信作者:曾锋(1977-),男,博士,副教授,硕士生导师。主要从事计算机建模等方向研究。E-mail:csu_fengzeng@163.com。
基金项目:中国博士后自然基金(2016T90995),江苏省自然科学基金(BK20150715)。
更新日期/Last Update: 2019-10-23