[1]赵勇毅,常建华,沈 婉,等.矿井内CH4与CO2双组分NDIR传感器的设计与实现[J].红外技术,2019,41(8):778-785.[doi:10.11846/j.issn.1001_8891.2019080014]
 ZHAO Yongyi,CHANG Jianhua,SHEN Wan,et al.NDIR Sensor for CH4 and CO2 Gas Concentration Detection in Mines[J].Infrared Technology,2019,41(8):778-785.[doi:10.11846/j.issn.1001_8891.2019080014]


《红外技术》[ISSN:1001-8891/CN:CN 53-1053/TN]



NDIR Sensor for CH4 and CO2 Gas Concentration Detection in Mines
赵勇毅1常建华12沈 婉1赵正杰1房久龙1
1. 南京信息工程大学 江苏省大气环境与装备技术协同创新中心,江苏 南京 210044;
2. 南京信息工程大学 江苏省气象探测与信息处理重点实验室,江苏 南京 210044
ZHAO Yongyi1CHANG Jianhua12SHEN Wan1ZHAO Zhengjie1FANG Jiulong1
 1. Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China;
2. Jiangsu Key Laboratory of Meteorological Observation and Information Processing, Nanjing University of Information Science & Technology, Nanjing 210044, China
 NDIRdual gasoptical simulationgas sensor
为了实现对矿井有害气体的有效监测和控制,本文基于非色散红外(NDIR)原理,设计了一种双组分气体传感器。重点提出了一种反射式气室,然后利用光学仿真软件LightTools对腔体内的光线传播方向进行了光线追迹分析,并对到达探测器4个接收面的光强分布进行了模拟分析,验证了该气室的可行性与优越性。在器件上选用电调制红外光源和热释电探测器,由单片机处理电信号并输出气体浓度信息,大大提高了检测精度。实验结果表明,该传感器能够准确检测0~2000 ppm范围内的甲烷与二氧化碳气体浓度,满量程精度可达4.5%。可以满足矿井内甲烷、二氧化碳气体浓度检测的需要,具有广阔的应用前景。
 To effectively monitor and control harmful gases in mines, the design of a novel, dual gas sensor based on the principle of non-spectroscopic detection technique is presented in this paper. A reflective gas chamber is presented, and subsequently, the optical simulation software LightTools is used to analyze the direction of propagation of light in the cavity and the distribution of light intensity on the four receiving surfaces of the detector for verifying the feasibility and superiority of the gas chamber. The devices used in the sensor include a pulsable IR source and an infrared detector. The single chip of the detector handles the electrical signal and outputs the information about the gas concentrations, thereby greatly improving the detection accuracy of the sensor. The experimental results demonstrate that the proposed sensor can accurately measure the CH4 and CO2 concentrations within a range of 0–2000 ppm, with a full range accuracy of 4.5%. The sensor can therefore effectively detect CH4 and CO2 concentrations in mines and has a broad application prospect.


[1] 罗勇, 毛晓波, 黄俊杰. 红外检测瓦斯传感器的设计与实现[J]. 仪表技术与传感器, 2007(8): 4-6.
LUO Yong, MAO Xiaobo, HUANG Junjie. Development of infrared methane sensor[J]. Instrument Technique and Sensor, 2007(8): 4-6.
[2] Nebiker P W, Pleisch R E. Photoacoustic gas detection for fire warning[J]. Fire Safety Journal, 2002, 37(4): 429-436.
[3] Tachikawa H, Yamano T. A full dimensional direct ab initio dynamics study of the electron capture by SF6[J]. Chemical Physics, 2001, 264(1): 81-89.
[4] Robinjouan P, Yousfi M. New breakdown electric field calculation for SF6 high voltage circuit breaker applications[J]. Plasma Science and Technology, 2008, 9(6): 690-694.
[5] Jane Hodgkinsona, Richard Smithb, Wah On Hob, et al. Non-dispersive infrared(NDIR) measurement of carbon dioxide at 4.2 ?m in a compact and optically efficient sensor[J]. Sensors and Actuators B: Chemical, 2013, 186: 580-588.
[6] WU Long, XING Likun. Study on quantitative measurement method of deleterious gases in underground mine using non-dispersive infrared technology[J]. Journal of Safety Science and Technology, 2014, 10(3): 155-159.
[7] Vincent T A, Gardner J W. A low cost MEMS based NDIR system for the monitoring of carbon dioxide in breath analysis at ppm levels[J]. Sensors and Actuators B: Chemical, 2016, 236: 954-964.
[8] 丁蕾, 刘文清, 张玉钧, 等. 机动车尾气CO和CO2非分光红外遥测技术研究[J]. 量子电子学报, 2003, 20(4): 459-464.
DING Lei, LIU Wenqing, ZHANG Yujun, et al. Investigation on remote measurement of automobile infrared absorption method[J]. Chinese Journal of Quantum Electronics, 2003, 20(4): 459-464.
[9] WANG H, WANG J, MA X, et al. Note: A NDIR instrument for multicomponent gas detection using the galvanometer modulation[J]. Review of Scientific Instruments, 2017, 88(11): 116103.
[10] Gobrecht A, Bendoula R, Roger J M, et al. Combining linear polarization spectroscopy and the representative layer theory to measure the beer-lambert law absorbance of highly scattering materials[J]. Analytica Chimica Acta, 2015, 853(1): 486-494.
[11] Moumen S, Raible I, Krauss A, et al. Enrichment-layer based miniaturized non-dispersive infrared CO2 sensor[J]. Procedia Engineering, 2015, 120: 400-405.
[12] Scholz L, Perez A O, Bierer B, et al. Miniature Low-cost carbon dioxide sensor for mobile devices[J]. IEEE Sensors Journal, 2017, 17(9): 2889-2895.
[13] 郑晓东, 汪扬春, 秦文红. 非序列光线追迹程序照度分布计算的随机误差分析[J]. 光子学报, 2008, 37(10): 1970-1974.
ZHENG Xiaodong, WANG Yangchun, QIN Wenhong. Random error analysis of illumination distribution calculated by non-sequential ray tracing programs[J]. Acta Photonica Sinica, 2008, 37(10): 1970-1974.
[14] 陈晨, 张玉钧, 何莹, 等. 机动车尾气NDIR传感器性能仿真分析[J]. 红外技术, 2017, 39(6): 567-573.
CHEN Chen, ZHANG Yujun, HE Ying, et al. Performance simulation analysis of NDIR sensor for vehicle exhaust[J]. Infrared Technology, 2017, 39(6): 567-573.
[15] 孙毅. 近红外光谱在线分析气体污染物的方法研究[D]. 天津: 天津大学, 2007.
SUN Yi. Research on the Method of on-line Monitoring Gas Pollutant by NIR Spectroscopy[D]. Tianjin: Tianjin University, 2007.






更新日期/Last Update: 2019-08-20