[1]易诗,张洋溢,聂焱,等.红外图像中快速运动目标的检测与跟踪方法[J].红外技术,2019,41(3):268-272.[doi:10.11846/j.issn.1001_8891.201903012]
 YI Shi,ZHANG Yangyi,NIE Yan,et al.Fast-moving Target Detection and Tracking Method in Infrared Image[J].Infrared Technology,2019,41(3):268-272.[doi:10.11846/j.issn.1001_8891.201903012]
点击复制

红外图像中快速运动目标的检测与跟踪方法
分享到:

《红外技术》[ISSN:1001-8891/CN:CN 53-1053/TN]

卷:
41卷
期数:
2019年第3期
页码:
268-272
栏目:
出版日期:
2019-03-20

文章信息/Info

Title:
Fast-moving Target Detection and Tracking Method in Infrared Image
文章编号:
1001-8891(2019)03-0268-05
作者:
易诗张洋溢聂焱赵茜茜庄依彤
成都理工大学 信息科学与技术学院
Author(s):
YI ShiZHANG YangyiNIE YanZHAO QianqianZHUANG Yitong
College of Information Science and Technology, Chengdu University of Technology
关键词:
红外图像运动目标检测目标跟踪ViBE算法fDSST算法
Keywords:
infrared imagemoving target detectiontarget trackingViBE algorithmfDSST algorithm
分类号:
TN919.5
DOI:
10.11846/j.issn.1001_8891.201903012
文献标志码:
A
摘要:
红外热成像图像具有分辨率较低,细节模糊,对于快速运动目标适应性较差的特点。本文提出了一种结合目标检测算法,目标跟踪算法的红外图像中快速运动目标的检测与跟踪方法。该方法根据红外图像特点,使用ViBE算法检测运动目标,检测出图像中显著运动目标后,触发跟踪器,使用fDSST目标跟踪算法对显著运动目标进行跟踪。测试结果表明,该方法对于快速运动的红外图像目标能够高效检测、快速跟踪。检测与跟踪效果相对传统方法具有检测率更高、鲁棒性更好、实时性更强的优势,对于红外图像中目标检测与跟踪具有很强应用价值。
Abstract:
An infrared thermal image exhibits characteristics of low resolution, fuzzy details, and poor adaptability to fast-moving targets. In this paper, a fast-moving target detection and tracking method for an infrared image is proposed, which combines infrared thermal image with machine vision. According to the characteristics of an infrared image, the ViBE algorithm is used to detect moving objects. After detecting the salient moving objects in the image, the tracker is triggered and the fast discriminative scale space tracking algorithm for target tracking is used to track the salient moving objects. The test results demonstrate that this method can detect and track the fast-moving infrared image target efficiently, and its detection and tracking efficiency is higher than in the traditional method. In addition, it is robust and has real-time advantages. Therefore, this method has a strong application value for infrared image target detection and tracking.

参考文献/References:

[1]? 崔美玉. 论红外热像仪的应用领域及技术特点[J]. 中国安防, 2014(12): 90-93.
CUI Meiyu. Application field and technical characteristics of infrared thermal imager[J]. China Security & Protection, 2014(12): 90-93.
[2]? 范延军. 基于机器视觉的先进辅助驾驶系统关键技术研究[D]. 南京: 东南大学, 2016.
FAN Yanjun. Research on key technologies of advanced assisted driving system based on machine vision[D]. Nanjing: Southeast University, 2016.
[3]? 张科, 刘彦. 改进的基于背景预测的红外弱小目标检测方法[J]. 火力与指挥控制, 2008, 33(11): 22-24.
ZHANG Ke, LIU Yan. An Improved Small Target Detection Method Based on background prediction in IR images[J]. Fire Control and Command control, 2008, 33(11): 22-24.
[4]? 杨阳, 杨静宇. 基于显著性分割的红外行人检测[J]. 南京理工大学学报: 自然科学版, 2013, 37(2): 251-256.
YANG Yang, YANG Jingyu. Infrared pedestrian detection based on saliency segmentation[J]. Journal of Nanjing University of Science and Technology, 2013, 37(2): 251-256.
[5]? 魏丽, 丁萌, 曾丽君, 等. 红外图像中基于似物性与稀疏编码的行人检测[J]. 红外技术, 2016, 38(9): 752-757.
WEI Li, DING Meng, CENG Lijun, et al. Pedestrian detection based on quasi physical properties and sparse coding in infrared images[J]. Infrared Technology, 2016, 38(9): 752-757.
[6]? Ahmed M N, Yamany S M, Mohamed N, et al. A Modified Fuzzy means Algorithm for Bias Field Estimation and Segmentation of MRI Data[J]. IEEE Transactions on Medical Imaging, 2002, 21(3): 193-199.
[7]? ZHENG J, ZHANG D H, HUANG K D, et al. An Adaptive Image Segmentation Method Based on the Fuzzy means with Spatial Information[C]//IET Image Processing, 2017, 12(5): 785-792.?
[8]? Henry L, Neville D, NAN X. Detection of small objects in clutterusing a GA-RBF neural network[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(1): 98-118.
[9]? Pinnegar C R, Mansinha L. Time-local spectral analysis for non-stationary time series: the S-transform for noisy signals[J]. Fluctuation and noise letters, 2003, 3(3): 357-364.
[10]? Pinnegar C R, Eaton D W. Application of the S transform to prestack noise attenuation filtering[J]. Journal of Geophysical Research, 2003, 108(B9): 1-10.?
[11]? WU Bo, Nevatia Ram. Detection and tracking of multiple, partially occluded humans by Bayesian combination of edgelet based part detectors[J]. International Journal of Computer Vision, 2007, 75(2): 247-266.?

相似文献/References:

[1]郭水旺,王宝红,季钢,等.基于基因表达式编码算法的红外图像轮廓提取[J].红外技术,2013,35(01):038.
 GUO Shui-wang,WANG Bao-hong,JI Gang,et al. Infrared Image Contour Extraction Based on the Gene Expression Coding Algorithm[J].Infrared Technology,2013,35(3):038.
[2]孙爱平,皮冬明,安长亮,等. 光机装校阶段红外与可见光图像配准技术研究[J].红外技术,2013,35(01):050.
 SUN Ai-ping,PI Dong-ming,AN Chang-liang,et al. Study on IR/Visible Image Registration for Lens Assembly[J].Infrared Technology,2013,35(3):050.
[3]路建方,王新赛,肖志洋,等. 基于FPGA的红外图像自适应分段线性增强算法[J].红外技术,2013,35(02):102.
 LU Jian-fang,WANG Xin-sai,XIAO Zhi-yang,et al. An Adaptive Piecewise Linear Enhance Algorithm for Infrared Image Based on FPGA[J].Infrared Technology,2013,35(3):102.
[4]徐铭蔚,李郁峰,陈念年,等.多尺度融合与非线性颜色传递的微光与红外图像染色[J].红外技术,2012,34(12):722.
 XU Ming-wei,LI Yu-feng,CHEN Nian-nian,et al. Coloration of the Low Light Level and Infrared Image Using Multi-scale Fusion and Nonlinear Color Transfer Technique[J].Infrared Technology,2012,34(3):722.
[5]纪利娥,杨风暴,王志社,等. 基于边缘图像和SURF特征的可见光与红外图像的匹配算法[J].红外技术,2012,34(11):629.
 JI Li-e,YANG Feng-bao,WANG Zhi-she,et al.Visible and Infrared Image Matching Algorithm Based on Edge Image and SURF Features[J].Infrared Technology,2012,34(3):629.
[6]张红辉,罗海波,余新荣,等. 改进的神经网络红外图像非均匀性校正方法[J].红外技术,2013,35(04):232.
[7]张强,侯宁,刘红燕. 红外焦平面阵列非均匀性多点实时压缩校正研究[J].红外技术,2012,34(10):593.
 ZHANG Qiang,HOU Ning,LIU Hong-yan. Study on Real-time Multi-points Compressive Nonuniformity Correction of IRFPA[J].Infrared Technology,2012,34(3):593.
[8]路建方,王新赛,肖志洋,等. 基于灰度分层的FPGA红外图像伪彩色实时化研究[J].红外技术,2013,35(05):285.
 LU Jian-fang,WANG Xin-sai,XIAO Zhi-yang,et al. The Research on Real-time Pseudo-color of Infrared Image in FPGA Based on Gray Delaminating[J].Infrared Technology,2013,35(3):285.
[9]陈钱.红外图像处理技术现状及发展趋势[J].红外技术,2013,35(06):311.
 CHEN Qian.The Status and Development Trend of Infrared Image Processing Technology[J].Infrared Technology,2013,35(3):311.
[10]谭东杰,张安.基于局部直方图规定化的红外图像非均匀性校正[J].红外技术,2013,35(06):325.
 TAN Dong-jie,ZHANG An.Non-uniformity Correction Based on Local Histogram Specification[J].Infrared Technology,2013,35(3):325.

备注/Memo

备注/Memo:
收稿日期:2018-09-11;修订日期:2018-12-21.
作者简介:易诗(1983-),男,四川成都人,硕士研究生,高级实验师,主要从事机器视觉研究,深度学习算法研究,信号与信息处理研究。E-mail:549745481@qq.com。
基金项目:国家大学生创新创业项目(201810616033)。

更新日期/Last Update: 2019-03-19