[1]吴宏林,赵淑珍,王建新,等.融合内外特征的图像超分辨率算法[J].红外技术,2019,41(9):843-851.[doi:10.11846/j.issn.1001_8891.201909008]
 WU Honglin,ZHAO Shuzhen,WANG Jianxin,et al.Super-resolution Image Algorithm Based on Joint Constraints of Internal and External Features[J].Infrared Technology,2019,41(9):843-851.[doi:10.11846/j.issn.1001_8891.201909008]
点击复制

融合内外特征的图像超分辨率算法
分享到:

《红外技术》[ISSN:1001-8891/CN:CN 53-1053/TN]

卷:
41卷
期数:
2019年第9期
页码:
843-851
栏目:
出版日期:
2019-09-20

文章信息/Info

Title:
Super-resolution Image Algorithm Based on Joint Constraints of Internal and External Features

文章编号:
1001-8891(2019)09-0843-09
作者:
吴宏林12赵淑珍12王建新12张建明12喻小虎13
1. 长沙理工大学 计算机与通信工程学院;
2. 长沙理工大学 综合交通运输大智数据能处理湖南省重点实验室;
3. 湖南中森通信科技有限公司

Author(s):
WU Honglin12ZHAO Shuzhen12WANG Jianxin12ZHANG Jianming12YU Xiaohu13
1. School of Computer and Communication Engineering, Changsha University of Science and Technology;
2. Hunan Provincial Key Laboratory of Intelligent Processing of Big Data on Transportation, Changsha University of Science and Technology;
3. Hunan Zhongsen Communication Science and Technology Company Limited

关键词:
内外特征超分辨率深度卷积网络高频残差字典稀疏约束卷积稀疏表示图像融合迭代反投影
Keywords:
internal and external featuressuper-resolutiondeep convolutional networkhigh-frequency residual dictionarysparse constraintconvolutional sparse representationimage fusioniterative back projection
分类号:
TP391
DOI:
10.11846/j.issn.1001_8891.201909008
文献标志码:
A
摘要:
针对单一先验知识不足以约束病态严重的图像超分辨率问题,本文提出了融合内外特征的图像超分辨率算法。针对图像的自相似性,通过采用基于内部特征的深度卷积网络学习来增强输入图像的细节纹理,去除超分辨率图像伪影;同时,使用基于外部图像的稀疏约束方法来学习图像结构信息,并结合高频残差字典来解决超分辨率重建中的高频信息缺失问题;最后通过卷积稀疏方法分别从基础层和细节层来融合内外特征的重建图像,以获得细节清晰、去伪影的超分辨率图像,进一步提高图像质量。与传统算法相比,本文算法在重建图像的纹理特征和质量上都得到了增强,且视觉效果与峰值信噪比较传统算法有所改善。
Abstract:
Existing knowledge on the severely ill-posed super-resolution problem is not sufficient; therefore, we propose an algorithm that joint constraints the internal and external features of image. For the self-similarity of the image, a deep convolutional network based on the internal features is used to enhance the detailed texture of the input image and remove the artifacts of the super-resolution image. Further, we utilize the sparse constraint method based on the external features to obtain the structural information of the image, and the high-frequency residual dictionary is combined to solve the problem of loss of high-frequency information in the reconstruction of super-resolution images. Finally, the features of the basic and detail layers in the reconstruction image are fused by the convolutional sparse method to obtain the super-resolution image with clear details and without artifacts, further improving the image quality. Compared with the traditional algorithms, the proposed method enhances the texture feature and quality of the reconstructed image. It also considerably improves the visual quality and peak signal to noise ratio.

参考文献/References:

[1] PARK S C, PARK M K, KANG M G. Super-resolution image reconstruction: a technical overview[J]. IEEE signal processing magazine, 2003, 20(3): 21-36.
[2] 江静, 张雪松. 图像超分辨率重建算法综述[J]. 红外技术, 2012, 34(1): 24-30.
JIANG Jing, ZHANG Xuesong. A review of super-resolution reconstruction algorithms[J]. Infrared Technology, 2012, 34(1): 24-30.?
[3] 姜杰, 刘哲, 吕林涛. 局部线性嵌入的快速单幅图像超分辨率技术[J]. 红外技术, 2018, 40(1): 39-46.
JIANG Jie, LIU Zhe, LV Lintao. Fast single-image super resolution technique based on local linear embedding[J]. Infrared Technology, 2018, 40(1): 39-46.
[4] WANG Z, LIU D, YANG J, et al. Deep networks for image super-resolution with sparse prior[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 370-378.
[5] 蔡坤琪. 快速图像超分辨率方法研究[J]. 红外技术, 2018, 40(3): 269-274.
CAI Kunqi. A study on rapid image super-resolution[J]. Infrared Technology, 2018, 40(3): 269-274.
[6] YANG Jianchao, WRIGHT J, HUANG T S, et al. Image super-resolution via sparse representation[J]. IEEE Transactions on Image Processing, 2010, 19(11): 2861-2873.
[7] ZHU Z, GUO F, YU H, et al. Fast Single Image Super-Resolution via Self-Example Learning and Sparse Representation[J]. IEEE Trans. Multimedia, 2014, 16(8): 2178-2190.
[8] YANG C Y, HUANG J B, YANG M H. Exploiting self-similarities for single frame super-resolution[C]//Asian Conference on Computer Vision. Springer, 2010: 497-510.
[9] DONG Chao, CHEN C L, HE K, et al. Learning a deep convolutional network for image super-resolution[C]//European Conference on Computer Vision. Springer, 2014: 184-199.
[10] KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 1646-1654.
[11] REN H, EL-KHAMY M, LEE J. Image super resolution based on fusing multiple convolution neural networks[C]//IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, 2017: 1050-1057.
[12] Bevilacqua M, Roumy A, Guillemot C, et al. Super-resolution using Neighbor Embedding of Back-projection residuals[C]//Digital Signal Processing (DSP), 2013 18th International Conference on IEEE, 2013: 1-8.
[13] CUI Z, CHANG H, SHAN S, et al. Deep network cascade for image super-resolution[C]//European Conference on Computer Vision. Springer, 2014: 49-64.
[14] WANG Z, YANG Y, WANG Z, et al. Learning super-resolution jointly from external and internal examples[J]. IEEE Transactions on Image Processing, 2015, 24(11): 4359-4371.
[15] DONG Chao, DENG Y, CHEN C L, et al. Compression artifacts reduction by a deep convolutional network[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 576-584.
[16] Nair V, Hinton G E. Rectified linear units improve restricted boltzmann machines[C]//Proceedings of the 27th international conference on machine learning (ICML-10). 2010: 807-814.
[17] Gregor K, Lecun Y. Learning fast approximations of sparse coding[C]//Proceedings of the 27th International Conference on International Conference on Machine Learning, 2010: 399-406.
[18] Timofte R, Rothe R, Gool L V. Seven ways to improve example-based single image super resolution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 1865-1873.
[19] LIU Yu, CHEN X, WARD R K, et al. Image fusion with convolutional sparse representation[J]. IEEE signal processing letters, 2016, 23(12): 1882-1886.
[20] Wohlberg B. Efficient algorithms for convolutional sparse representations[J]. IEEE Transactions on Image Processing, 2016, 25(1): 301-315.
[21] YANG Bin, LI S. Multifocus image fusion and restoration with sparse representation[J]. IEEE Transactions on Instrumentation and Measurement, 2010, 59(4): 884-892.
[22] YANG Bin, LI S. Pixel-level image fusion with simultaneous orthogonal matching pursuit[J]. Information fusion, 2012, 13(1): 10-19.
[23] DONG Chao, CHEN C L, TANG X. Accelerating the super-resolution convolutional neural network[C]//European Conference on Computer Vision. Springer, 2016: 391-407.
[24] CHEN Chen, FOWLER J E. Single-image super-resolution using multihypothesis prediction[C]//Signals, Systems and Computers. IEEE, 2012: 608-612.

相似文献/References:

[1]聂笃宪,陈一梅,陈鹤峰.去混合噪声的超分辨率图像重建算法[J].红外技术,2010,32(10):604.
 NIE Du-xian,CHEN Yi-mei,CHEN He-feng.Super-resolution Image Reconstruction Algorithm for mixed Noises Removal[J].Infrared Technology,2010,32(9):604.
[2]樊超,孙宁宁,夏旭.基于序列图像的超分辨率重建[J].红外技术,2010,32(5):279.
 FAN Chao,SUN Ning-ning,XIA Xu.Super-resolution Reconstruction Based on Image Sequences[J].Infrared Technology,2010,32(9):279.
[3]陈博洋,陈桂林,孙胜利.亚像元技术在图像采集系统中的应用[J].红外技术,2007,29(4):226.
 CHEN Bo-Yang,CHEN Gui-Lin,SUN Sheng-Li.Application of Subpixel Technology for Image Collection System[J].Infrared Technology,2007,29(9):226.
[4]浦利,金伟其,刘玉树,等.基于小波双立方配比插值的图像插值放大算法研究[J].红外技术,2006,28(8):453.
 PU Li,JIN Wei-qi,LIU Yu-shu,et al.A Study of Wavelet Bi-cubic Ratio Interpolation Algorithm[J].Infrared Technology,2006,28(9):453.
[5]徐宏财,向健勇,潘皓.一种改进的POCS算法的超分辨率图像重建[J].红外技术,2005,27(6):477.
 XU Hong-cai,XIANG Jian-yong,PAN Hao.An Improved POCS Algorithm for Super-resolution Image Reconstruction[J].Infrared Technology,2005,27(9):477.
[6]姚 敏,周 勤.一种低匹配误差敏感度的红外图像超分辨率算法[J].红外技术,2016,38(10):864.[doi:10.11846/j.issn.1001_8891.201610010]
 YAO Min,ZHOU Qin.An Infrared Images Super-resolution Algorithm with Low Registration Error Sensitivity [J].Infrared Technology,2016,38(9):864.[doi:10.11846/j.issn.1001_8891.201610010]
[7]刘 哲,黄世奇,姜 杰.基于引导滤波和多尺度局部自相似单幅红外图像超分辨率方法[J].红外技术,2017,39(4):345.[doi:10.11846/j.issn.1001_8891.201704009]
 LIU Zhe,HUANG Shiqi,JIANG Jie.Single Image Super Resolution Method Based on Multi-scale Self-similarity and Non Local Means [J].Infrared Technology,2017,39(9):345.[doi:10.11846/j.issn.1001_8891.201704009]
[8]刘 哲,韩九强,黄世奇.基于多引导滤波器的单幅图像超分辨率技术[J].红外技术,2017,39(10):920.[doi:10.11846/j.issn.1001_8891.201710009]
 LIU Zhe,HAN jiuqiang,HUANG Shiqi.Single Image Super-Resolution Based on Multi-Guided Filtering[J].Infrared Technology,2017,39(9):920.[doi:10.11846/j.issn.1001_8891.201710009]
[9]姜杰,刘哲,吕林涛.局部线性嵌入的快速单幅图像超分辨率技术[J].红外技术,2018,40(1):039.[doi:10.11846/j.issn.1001_8891.201801008]
 JIANG Jie,LIU Zhe,LV Lintao.Fast Single-image Super Resolution Technique Based on Local Linear Embedding[J].Infrared Technology,2018,40(9):039.[doi:10.11846/j.issn.1001_8891.201801008]
[10]蔡坤琪.快速图像超分辨率方法研究[J].红外技术,2018,40(3):269.[doi:10.11846/j.issn.1001_8891.201803012]
 CAI Kunqi.A Study on Rapid Image Super-resolution[J].Infrared Technology,2018,40(9):269.[doi:10.11846/j.issn.1001_8891.201803012]

备注/Memo

备注/Memo:
收稿日期:2018-08-24;修订日期:2019-08-29.
作者简介:吴宏林(1982-),男,湖南邵阳人,讲师,博士,主要研究方向为压缩感知和图像处理。E-mail:honglinwu@csust.edu.cn。
基金项目:湖南省研究生科研创新项目(CX20190697);长沙理工大学研究生科研创新项目(CX2019SS28);湖南省研究生培养创新基地项目(湘教通[2017]451号-);长沙理工大学青年教师成长计划项目(2019QJCZ015)。

更新日期/Last Update: 2019-09-20