[1]易 诗,聂 焱,张洋溢,等.基于红外热成像与YOLOv3的夜间目标识别方法[J].红外技术,2019,41(10):970-975.[doi:doi:10.11846/j.issn.1001_8891.201910013]
 YI Shi,NIE Yan,ZHANG Yangyi,et al.Nighttime Target Recognition Method Based on Infrared Thermal Imaging and YOLOv3 [J].Infrared Technology,2019,41(10):970-975.[doi:doi:10.11846/j.issn.1001_8891.201910013]
点击复制

基于红外热成像与YOLOv3的夜间目标识别方法
分享到:

《红外技术》[ISSN:1001-8891/CN:CN 53-1053/TN]

卷:
41卷
期数:
2019年第10期
页码:
970-975
栏目:
出版日期:
2019-10-21

文章信息/Info

Title:
Nighttime Target Recognition Method Based on
Infrared Thermal Imaging and YOLOv3
文章编号:
1001-8891(2019)10-0970-06
作者:
易 诗聂 焱张洋溢赵茜茜庄依彤
成都理工大学 信息科学与技术学院,四川 成都 610059
Author(s):
YI ShiNIE YanZHANG YangyiZHAO QianqianZHUANG Yitong
College of Information Science and Technology, Chengdu University of Technology, Chengdu 610059, China
关键词:
红外热成像目标识别人工智能YOLOv3
Keywords:
infrared thermal imaging target recognition artificial intelligence YOLOv3
分类号:
TN919.5
DOI:
doi:10.11846/j.issn.1001_8891.201910013
文献标志码:
A
摘要:
红外热成像图像反应物体温度信息,受环境条件影响较少,对于特定条件下的夜间安防监控、行车辅助、航运、军事侦查等方面具有很强应用价值。近年来使用人工智能对图像中目标检测与识别技术发展突飞猛进,广泛应用于各个领域。本文提出了一种结合红外热成像图像处理技术与人工智能目标识别技术的夜间目标识别方法。实时采集热成像视频进行预处理,增强其对比度与细节,使用基于深度学习技术的最新目标检测框架YOLOv3对采集处理后的热成像图像中特定目标进行检测,输出检测结果。测试结果表明,该方法对于夜间目标识别率高、实时性强,结合了红外热成像夜间监测和人工智能目标检测的优势,对于夜间的目标识别、跟踪技术具有重大应用价值。
Abstract:
Infrared thermal images reflect object temperature information that is less affected by environmental conditions. They have strong application value for nighttime security monitoring, driving assistance, shipping, military investigation, and other aspects, under certain conditions. In recent years, artificial intelligence has been used in the development of target detection and recognition technology in imaging and various fields. This paper proposes a nighttime target detection method combining infrared thermal imaging image processing and artificial intelligence target detection. Thermal imaging videos are acquired in real time for pre-processing in order to enhance the contrast and details of the thermal images, and the latest target detection framework, YOLOv3, based on deep learning is utilized to detect specific targets in the acquired thermal images and subsequently output the detection results. The test results show that the proposed method has high recognition rate and desirable real-time performance at nighttime; it combines the advantages of infrared thermal imaging nighttime monitoring and artificial intelligence target detection. Furthermore, it has been demonstrated that tracking technology has great application in nighttime target recognition.

参考文献/References:

[1] 崔美玉. 论红外热像仪的应用领域及技术特点[J]. 中国安防, 2014(12): 90-93.
CUI Meiyu. Application field and technical characteristics of infrared thermal imager[J]. China Security & Protection, 2014(12): 90-93.
[2] 范延军. 基于机器视觉的先进辅助驾驶系统关键技术研究[D]. 南京: 东南大学, 2016.
FAN Yanjun. Research on Key Technologies of Advanced Assisted Driving System based on Machine Vision[D]. Nanjing: Southeast University, 2016.
[3] 张科, 刘彦. 改进的基于背景预测的红外弱小目标检测方法[J]. 火力与指挥控制, 2008, 33(11): 22-24.
ZHANG Ke, LIU Yan. An improved small target detection method command control[J]. Fire Control & Command Control, 2008, 33(11): 22-24.
[4] 杨阳, 杨静宇. 基于显著性分割的红外行人检测[J]. 南京理工大学学报: 自然科学版, 2013, 37(2): 251-256.
YANG Yang, YANG Jingyu. Infrared pedestrian detection based on saliency segmentation[J]. Journal of Nanjing University of Science and Technology, 2013, 37(2): 251-256.
[5] 魏丽, 丁萌, 曾丽君, 等. 红外图像中基于似物性与稀疏编码的行人检测[J]. 红外技术, 2016, 38(9): 752-757.
WEI Li, DING Meng, CENG Lijun, et al. Pedestrian detection based on quasi physical properties and sparse coding in infrared images[J]. Infrared Technology, 2016, 38(9): 752-757.
[6] Dalal N, Triggs B. Histograms of oriented gradients for human detection[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005, 1(1): 886-893.
[7] Christian Leistner, Amir Saffari. Horst bisch of miforests: multiple instance learning with randomized trees[C]//Proceedings of the 11th European Conference on Computer Vision: Part VI, ECCV, 2010: 29-42.
[8] Babenko B, YANG Minghsuan, Belongie S. Visual tracking with online multiple instance learning[C]//Computer Vision and Pattern Recognition, 2009: 983-990.
[9] David A Ross, LIM Jongwoo, LIN Rueisung, et al. Incremental learning for robust visual tracking[J]. International Journal of Computer Vision, 2008, 36(12): 125-141.
[10] WU B, NEVATIA R. Detection of multiple, partially occluded humans in a single image by Bayesian combination of edgelet part detectors[C]//Proceedings of the Tenth IEEE International Conference on Computer Vision, 2005: 90-97.
[11] WU Bo, Nevatia Ram. Detection and tracking of multiple, partially occluded humans by Bayesian combination of edgelet based part detectors[J]. International Journal of Computer Vision, 2007, 75(2): 247-266.
[12] WANGZ H, FANB, WU F C. Local intensity order pattern for feature description[C]//International Conference on Computer Vision, 2011: 6-13(DOI: 10.1109/ICCV.2011.6126294).

相似文献/References:

[1]王世亮,杨帆,张志伟,等.基于目标红外特征与SIFT特征相结合的目标识别算法[J].红外技术,2012,34(09):503.
 WANG Shi-liang,YANG Fan,ZHANG Zhi-wei,et al.A Target Recognition Method Based on Infrared Features and SIFT[J].Infrared Technology,2012,34(10):503.
[2]李雪,陈勇,贾明永.多元红外双色导引头目标识别技术研究[J].红外技术,2013,35(06):373.
 LI Xue,CHEN Yong,JIA Ming-yong.The Target Recognition Technology for Multi-Element Dual-Band IR Seeker[J].Infrared Technology,2013,35(10):373.
[3]曾戈虹.红外系统噪声等效温差机理分析与实例计算[J].红外技术,2012,34(02):063.
 ZENG Ge-hong.Principles of Infrared Systems’ NEDT and Theoretical Calculations[J].Infrared Technology,2012,34(10):063.
[4]江友谊,余瑞星,宋军艳.基于ICM的局部不变特征提取方法[J].红外技术,2012,34(03):177.
 JIANG You-yi,YU Rui-xing,SONG Jun-yan.A Novel Method based on ICM for Local Invariant Feature Extraction[J].Infrared Technology,2012,34(10):177.
[5]杨永生,王民钢,侯美婵.基于SIFT特征匹配的地面背景下目标识别方法[J].红外技术,2010,32(12):713.
 YANG Yong-sheng,WANG Min-gang,HOU Mei-chan.Ground Target Recognition Method Based on SIFT[J].Infrared Technology,2010,32(10):713.
[6]张翔.基于光谱特征增强的高光谱图像地物目标识别[J].红外技术,2010,32(12):717.
 Target Recognition of Hyperspectral Image Based?on Enhanced Spectral Characteristics[J].Infrared Technology,2010,32(10):717.
[7]郑坤鹏,王普凯,周国印,等.基于MATLAB的红外图像中坦克特征量的提取方法[J].红外技术,2010,32(11):625.
 ZHENG Kun-peng,ZHOU Guo-yin,WANG Pu-kai,et al.The Extracting Method of Tank FeatureVector from Infrared Images Based on MATLAB[J].Infrared Technology,2010,32(10):625.
[8]王会鹏,王明忠,邱康.一种烟幕遮障下的伪装目标协同识别方法[J].红外技术,2014,36(5):404.[doi:10.11846/j.issn.1001_8891.201405013]
 WANG Hui-peng,WANG Ming-zhong,QIU Kang.A Cooperative Recognition method for the Smokescreen-cover Camouflage Target[J].Infrared Technology,2014,36(10):404.[doi:10.11846/j.issn.1001_8891.201405013]
[9]赵璟媛,王黎明,刘宾.基于SVD算法的红外序列图像增强技术研究[J].红外技术,2009,31(1):047.
 ZHAO Jing-yuan,WANG Li-ming,LIU Bin.The Research of Infrared Image Sequence Enhancement Based on SVD Algorithm[J].Infrared Technology,2009,31(10):047.
[10]项建胜,孟卫华,潘国庆.一种红外多光谱成像光学系统设计[J].红外技术,2009,31(12):683.
 XIANG Jian-sheng,MENG Wei-hua,PAN Guo-qing.A Multi-spectral Infrared Optical System[J].Infrared Technology,2009,31(10):683.

备注/Memo

备注/Memo:
收稿日期:2018-08-17;修订日期:2018-12-25.
作者简介:易诗(1983-),男,硕士,高级实验师,主要从事机器视觉研究,深度学习算法研究,信号与信息处理,嵌入式技术研究。E-mail:549745481@qq.com。
基金项目:国家大学生创新创业项目“基于深度学习的人脸识别跟随机器人”(201810616033)。
更新日期/Last Update: 2019-10-23