[1]牛奕,马云,李明明,等.非金属材料红外无损检测的建模和数值分析[J].红外技术,2019,41(3):214-219.[doi:10.11846/j.issn.1001_8891.201903003]
 NIU Yi,MA Yun,LI Mingming,et al.Modeling and Numerical Analysis of Infrared Nondestructive Testing of Non-metallic Materials[J].Infrared Technology,2019,41(3):214-219.[doi:10.11846/j.issn.1001_8891.201903003]
点击复制

非金属材料红外无损检测的建模和数值分析
分享到:

《红外技术》[ISSN:1001-8891/CN:CN 53-1053/TN]

卷:
41卷
期数:
2019年第3期
页码:
214-219
栏目:
出版日期:
2019-03-20

文章信息/Info

Title:
Modeling and Numerical Analysis of Infrared Nondestructive Testing of Non-metallic Materials

文章编号:
1001-8891(2019)03-0214-06
作者:
牛奕马云李明明张英
武汉理工大学 资源与环境工程学院
Author(s):
NIU YiMA YunLI MingmingZHANG Ying
School of Resources and Environmental Engineering, Wuhan University of Technology
关键词:
武汉理工大学 资源与环境工程学院
Keywords:
infrared nondestructive testingnon-metalmodelingtemperature gradient
分类号:
TN215
DOI:
10.11846/j.issn.1001_8891.201903003
文献标志码:
A
摘要:
利用ANSYS模拟建立二维、三维非金属材料非稳态导热模型,采用红外热源作为激励,非金属材料粘贴缺陷无损检测过程。在缺陷深度一定,不同缺陷厚度和面积条件下,二维模拟得到非金属材料表面温度,并计算温度梯度。分析温度梯度与缺陷厚度和半径的关系,提出确定缺陷边界和厚度的方法;建立3种不规则形状缺陷,通过三维模拟结果,验证二维模拟提出的确定缺陷边界和厚度方法的可行性。结果表明:在缺陷半径一定时,缺陷厚度与温度梯度峰值呈线性关系;缺陷半径大于10 mm,缺陷厚度与温度梯度峰值线性度基本相同;温度梯度峰值的位置与缺陷边界基本一致。
Abstract:
Two-dimensional and three-dimensional unsteady heat conduction models were established. The infrared heat source was used as the excitation, and ANSYS was used to simulate the nondestructive testing process of non-metallic materials. Under the condition that the defect depth was certain and the thickness and area of the defect were different, the surface temperature of the non-metal material was obtained by two-dimensional simulation, and the temperature gradient was calculated. The relationship between the temperature gradient and the thickness and radius of the defect was analyzed. The method of determining the boundary and thickness of the defect was put forward. Three kinds of irregular-shaped defects were established. The feasibility of the method for determining the boundary and thickness of the defect was verified by the three-dimensional simulation results. The results showed that the defect thickness had a linear relationship with the peak temperature gradient when the defect radius was fixed, and the defect radius was greater than 10mm. The defect thickness was similar to the temperature gradient, and the position of the peak temperature gradient was similar to the defect boundary.

参考文献/References:

[1]? 孙全胜, 李涛. 红外检测技术在探伤中的运用[J]. 红外技术, 2003, 25(2): 65-65.
SUN Quansheng, LI Tao. Application of Infrared Detection Technology in Flaw Detection[J]. Infrared Technology, 2003, 25(2): 65-65.
[2]? 李国华, 吴立新, 吴淼, 等. 红外热像技术及其应用的研究进展[J]. 红外与激光工程, 2004, 33(3): 227-230.
LI Guohua, WU Lixin, WU Miao, et al. Research progress of infrared thermal imaging technology and its application[J]. Infrared and Laser Engineering, 2004, 33(3): 227-230.
[3]? 王迅, 金万平, 张存林, 等. 红外热波无损检测技术及其进展[J]. 无损检测, 2004, 26(10): 497-502.?
WANG Xun, JIN Wanping, ZHANG Cunlin, et al. Infrared thermal wave non-destructive testing technology and its progress[J]. Non-destructive Testing, 2004, 26(10): 497-502.
[4]? 张金玉, 孟祥兵, 杨正伟, 等. 红外锁相法涂层测厚数值模拟与分析[J]. 红外与激光工程, 2015, 44(1): 6-11.
ZHANG Jinyu, MENG Xiangbing, YANG Zhengwei, et al. Numerical simulation and analysis of coating thickness measurement by infrared phase-locking method[J]. Infrared and Laser Engineering, 2015, 44(1): 6-11.
[5]? 王海亮, 范春利, 孙丰瑞, 等. 二维内部缺陷的红外瞬态定量识别算法[J]. 红外与激光工程, 2012, 41(7): 1714-1720.
WANG Hailiang, FAN Chunli, SUN Fengrui, et al. Infrared transient quantitative identification algorithm for two-dimensional internal defects[J]. Infrared and Laser Engineering, 2012, 41(7): 1714-1720.
[6]? 戴景民, 汪子君. 红外热成像无损检测技术及其应用现状[J]. 自动化技术与应用, 2007, 26(1): 1-8.
DAI Jingmin, WANG Zijun. Infrared Thermal Imaging Nondestructive Testing Technology and Its Application Status[J]. Automation Technology and Application, 2007, 26(1): 1-8.
[7]? 陈大鹏, 毛宏霞, 肖志河. 红外热成像无损检测技术现状及发展[J]. 计算机测量与控制, 2006, 24(4): 1-6.
CHEN Dapeng, MAO Hongxia, XIAO Zhihe. Current Status and Development of Infrared Thermography Nondestructive Testing Technology[J]. Computer Measurement & Control, 2006, 24(4): 1-6.
[8]? 郑恩辉, 曹文浩, 富雅琼, 等. 缺陷表面温度场的红外无损检测分析[J]. 计算机仿真, 2013, 30(4): 416-420.
ZHENG Enhui, CAO Wenhao, FU Yaqiong, et al. Infrared Nondestructive Detection Analysis of Defect Surface Temperature Field[J]. Computer Simulation, 2013, 30(4): 416-420.
[9]? 郑宏飞. 热力学与传热学基础[M]. 北京: 科学出版社, 2016.
ZHENG Hongfei. The basis of thermodynamics and heat transfer[M]. Beijing: Science Press, 2016.
[10]? 弗兰克P. 英克鲁佩勒. 传热和传质基本原理[M]. 葛新石, 叶宏, 译. 北京: 化学工业出版社, 2007.
Frank P. Inker Ruppler. The basic principles of heat transfer and mass transfer[M]. Ge Xinshi, Ye Hong, Trans. Beijing: Chemical Industry Press, 2007.
[11]? 周辉, 钱美丽, 冯金秋, 等. 建筑材料热物理性能与数据手册[M]. 北京: 中国建筑工业出版社, 2010.
ZHOU Hui, QIAN Meili, FENG Jinqiu, et al. Thermophysical Properties and Data Handbook of Building Materials[M]. Beijing: China Building Industry Press, 2010.
[12]? 王永茂, 郭兴旺, 李日华. 红外检测中缺陷大小和深度测量[J]. 红外技术, 2002, 32(6): 404-406.
WANG Yongmao, GUO Xingwang, LI Rihua. Measurement of defect size and depth in infrared detection[J]. Infrared Technology, 2002, 32(6): 404-406.

备注/Memo

备注/Memo:
收稿日期:2018-08-16;修订日期:2019-01-10.
作者简介:牛奕(1986-),男,博士,讲师,主要从事热安全科学机理、安全仿真与模拟的研究工作。E-mail:niuyi@whut.edu.cn。
基金项目:国家重点研发计划(2017YFF0209704);国家自然科学基金(51706164);武汉理工大学自主创新研究基金(2018IVB056)。

更新日期/Last Update: 2019-03-19