[1]金丽漫,张 宇,王彩萍,等.红外连续变焦镜头凸轮曲线优化及运动学仿真[J].红外技术,2019,41(2):147-152.[doi:10.11846/j.issn.1001_8891.201902007]
 JIN Liman,ZHANG Yu,WANG Caiping,et al.Cam Curve Optimization and Kinematics Simulation of Infrared Continuous Zoom Lens [J].Infrared Technology,2019,41(2):147-152.[doi:10.11846/j.issn.1001_8891.201902007]
点击复制

红外连续变焦镜头凸轮曲线优化及运动学仿真
分享到:

《红外技术》[ISSN:1001-8891/CN:CN 53-1053/TN]

卷:
41卷
期数:
2019年第2期
页码:
147-152
栏目:
出版日期:
2019-02-22

文章信息/Info

Title:
Cam Curve Optimization and Kinematics Simulation of
Infrared Continuous Zoom Lens
文章编号:
1001-8891(2019)02-0147-06
作者:
金丽漫12张 宇1王彩萍2路文龙2黄 攀2贾钰超2宋新成12
1. 昆明理工大学 机电工程学院,云南 昆明 650500;2. 云南北方驰宏光电有限公司,云南 昆明 650217
Author(s):
JIN Liman12ZHANG Yu1WANG Caiping2LU Wenlong2HUANG Pan2JIA Yuchao2SONG Xincheng12
1. Faculty of Mechanical and Electrical, Kunming University of Science and Technology, Kunming 650500, China;
2. Yunnan KIRO-CH Photonics Co., Ltd., Kunming 650217, China
关键词:
红外镜头连续变焦凸轮曲线优化运动学仿真
Keywords:
infrared lenscontinuous zoomcam curve optimizationkinematics simulation
分类号:
TN214
DOI:
10.11846/j.issn.1001_8891.201902007
文献标志码:
A
摘要:
随着制造技术的发展,机械补偿式变焦镜头的使用也越来越广泛。光学系统变焦的精确性、平滑性和驱动力均衡性主要取决于变焦凸轮,而变焦凸轮的压力角与凸轮外径、凸轮转角范围以及变倍组的运动规律有关。本文以某款红外连续变焦镜头为例,不改变凸轮外径和凸轮转角范围,对变倍组的运动规律进行优化设计,并通过ADAMS对优化后的模型进行运动学仿真。仿真结果表明:该优化方法可以降低变焦凸轮在短焦段和长焦段的压力角,消除变倍组等速运动时的刚性冲击。
Abstract:
With the development of manufacturing technology, the application of the mechanically compensated zoom lens is becoming increasingly widespread. The use of a cam is the key to ensuring precision, smoothness, and balanced driving force in the optical system. Furthermore, the pressure angle of the cam is influenced by its outer diameter, rotation angle range, and the motion law of the variation group. In this study, an infrared zoom lens is taken as an example, and while maintaining the outer diameter and rotation angle range of the cam as constants, the motion law of the zoom variation group is optimized; the optimized model is introduced into ADAMS for a kinematics simulation. The obtained simulation results show that the optimization method can be used to reduce the pressure angle of the cam in the short- and long-focus sections and eliminate the rigid impact of variation group at the constant velocity.

参考文献/References:

[1] 晏蕾, 贾平, 洪永丰, 等. 变焦距镜头凸轮曲线形式的选择[J]. 应用光学, 2010, 31(6): 876-882.
YAN Lei, JIA Ping, HONG Yongfeng, et al. Selection of cam curve for zoom lens [J]. Journal of Applied Optics, 2010, 31(6): 876-882.
[2] 孟军和, 张振, 孙兴文. 变焦距镜头的凸轮优化设计[J]. 红外与激光工程, 2002, 18(1): 101-103.
MENG Junhe, ZHANG Zhen, SUN Xingwen. Cam optimization of a zoom lens[J]. Infrared and Laser Engineering, 2002, 18(1): 101-103.
[3] 许正光, 赵一菲, 宋才良, 等. 用OZSAD软件实现复合式变焦凸轮曲线优化设计[J]. 应用光学, 2006, 27(3): 203-207.
XU Zhengguang, ZHAO Yifei, SONG Cailiang, et al. Optimization of compounding zoom cam curve design with OZSAD[J]. Journal of Applied Optics, 2006, 27(3): 203-207.
[4] 姚多舜. 机械补偿式三组元连续变焦光学系统设计方法(3)[J]. 应用光学, 2008(3): 481-486.
YAO Duoshun. Design method of mechanical compensated treble group continuous zoom optical system[J]. Journal of Applied Optics, 2008(3): 481-486.
[5] 吴清华. 摆动滚子从动件盘形凸轮机构的反求设计与凸轮数控加工程序的自动生成[D]. 上海: 上海海事大学, 2007.
WU Qinghua. Reverse Design of Swing Roller Dish Cam-follower and Auto-creating of the Cam CNC Code[D]. Shanghai: Shanghai Maritime University, 2007.
[6] 管荣法. 凸轮与凸轮机构[M]. 北京: 国防工业出版社, 1993.
GUAN Rongfa. Cam and Cam Mechanism[M]. Beijing: National Defence Industry Press, 1993.
[7] 陈立伟. 基于圆柱凸轮机构的模块化航天器接口研究[D]. 大连: 大连海事大学, 2017.
CHEN Liwei. The Research on Interface of Modular Spacecraft based on Cylindrical CAM[D]. Dalian: Dalian Maritime University, 2017.
[8] 陈鑫, 付跃刚. 变焦系统凸轮曲线的优化设计[J]. 应用光学, 2008, 29(1): 45-47
CHEN Xin, FU Yuegang. Optimal design of cam curve for zoom system[J]. Journal of Applied Optics, 2008, 29(1): 45-47.
[9] 路文龙. 1337红外连续变焦镜头变焦结构研究[D]. 昆明: 昆明理工大学, 2017.
LU Wenlong. Research on Zoom Structure of Infrared Continuous Zoom Lens[D]. Kunming: Kunming University of Science and Technology, 2017.
[10] 王琪, 梁静秋, 梁中翥, 等. 分孔径红外偏振成像仪光学系统设计[J]. 中国光学, 2018, 11(1): 92-99.
WANG Qi, LIANG Jingqiu, LIANG Zhongzhu, et al. Design of decentered aperture-divided optical system of infrared polarization imager[J]. Chinese Optics, 2018, 11(1): 92-99.

相似文献/References:

[1]陈吕吉,李萍,孙琪艳.20长波红外连续变焦光学系统设计[J].红外技术,2012,34(08):458.
 CHEN Lv-ji,LI Ping,SUN Qi-yan.Design of LWIR Zoom Optical System with 20:1 Zoom Range[J].Infrared Technology,2012,34(2):458.
[2]贾星蕊,李训牛,王海洋,等.大变倍比长波红外连续变焦光学系统设计[J].红外技术,2012,34(08):463.
 JIA Xing-rui,LI Xun-niu,WANG Hai-yang,et al.Design of a LWIR Continuous Zooming Optic System with Large Zooming Range[J].Infrared Technology,2012,34(2):463.
[3]陈吕吉,李萍.光学补偿中波红外变焦光学系统设计[J].红外技术,2010,32(11):645.
 CHEN Lv-ji,LI Ping.Optically Compensated MWIR Zoom System[J].Infrared Technology,2010,32(2):645.
[4]陈吕吉,李萍,马琳.紧凑中波红外连续变焦光学系统设计[J].红外技术,2010,32(10):562.
 CHEN Lv-ji,LI Ping,MA Lin.Compact MWIR Zoom System[J].Infrared Technology,2010,32(2):562.
[5]尹娜,孟庆超,齐雁龙,等.中波红外连续变焦光学系统设计[J].红外技术,2009,31(12):694.
 YIN Na,MENG Qing-chao,QI Yan-long,et al.Middle Infrared Continuous Zoom Optical System[J].Infrared Technology,2009,31(2):694.
[6]王海涛,郭良贤.制冷型中波红外变焦镜头[J].红外技术,2007,29(1):008.
 WANG Hai-tao,GUO Liang-xian.Cooled Thermal Imaging Mid-Wavelength Infrared Zoom Camera[J].Infrared Technology,2007,29(2):008.
[7]王红伟,束慧琴,陈吕吉,等.20×长波红外连续变焦热像仪光机系统设计[J].红外技术,2016,38(11):924.[doi:10.11846/j.issn.1001_8891.201611004]
 WANG Hongwei,SHU Huiqin,CHEN Lvji,et al.Optical and Mechanical Design of LWIR Continuous Zoom Thermal Imager with 20× Zoom Range[J].Infrared Technology,2016,38(2):924.[doi:10.11846/j.issn.1001_8891.201611004]

备注/Memo

备注/Memo:
收稿日期:2018-08-01;修订日期:2019-01-15.
作者简介:金丽漫(1993-),女,硕士研究生,主要研究方向:红外镜头的光机结构设计及光机热集成分析。E-mail:jlm9327@163.com。
通信作者:张宇(1964-),男,教授,主要研究方向:现代集成制造系统(CIMS)及数字化设计与制造。E-mail:498380267@qq.com。
基金项目:国家自然科学基金项目资助(51765027)。
更新日期/Last Update: 2019-02-21