[1]云泽荣,王志刚,王景辉.基于ADRC的黑体辐射源温控系统[J].红外技术,2019,41(3):232-238.[doi:10.11846/j.issn.1001_8891.201903006]
 YUN Zerong,WANG Zhigang,WANG Jinghui.Temperature Control System forBlackbody Radiation Source Based on ADRC[J].Infrared Technology,2019,41(3):232-238.[doi:10.11846/j.issn.1001_8891.201903006]
点击复制

基于ADRC的黑体辐射源温控系统
分享到:

《红外技术》[ISSN:1001-8891/CN:CN 53-1053/TN]

卷:
41卷
期数:
2019年第3期
页码:
232-238
栏目:
出版日期:
2019-03-20

文章信息/Info

Title:
Temperature Control System forBlackbody Radiation Source Based on ADRC

文章编号:
1001-8891(2019)03-0232-07
作者:
云泽荣14王志刚123王景辉4
1. 天津理工大学;
2. 天津市先进机电系统设计与智能控制重点实验室;
3. 机电工程国家级实验教学示范中心;
4. 中国计量科学研究院 热工所

Author(s):
YUN Zerong14WANG Zhigang123WANG Jinghui4
1. Tianjin University of Technology;
2. Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering;
3. National Demonstration Center for Experimental Mechanical and Electrical Engineering Education;
4. Division of Thermophysics and Process Measurements, National Institute of Metrology of China

关键词:
自抗扰控制器黑体辐射源温控系统红外校准
Keywords:
active disturbance rejection controlblackbody radiation sourcetemperature control systeminfrared calibration
分类号:
TP273
DOI:
10.11846/j.issn.1001_8891.201903006
文献标志码:
A
摘要:
黑体辐射源广泛用于红外成像系统的校正,在实际应用中要求黑体空腔在整个腔面区域上具有稳定、均匀的温度场,为了提高控温精度,本文设计了一种基于自抗扰控制的黑体辐射源温度控制系统。首先,基于黑体辐射源的数学模型,在MATLAB/Simulink环境下进行ADRC控制算法的仿真,并与传统的PID和Smith预估计控制算法进行比较。仿真结果表明自抗扰控制算法具有响应快、精度高以及良好的设定值跟踪能力;其次,利用LabVIEW软件的图形化编程实现了离散ADRC的编程;最后,在Compact RIO实时控制器中实现黑体辐射源的温度控制和实验数据的采集。实验结果表明,此温控系统提高了黑体控温的精度,温度稳定性优于0.03℃/10 min,并且该算法有着更强的自抗扰能力。自抗扰控制算法通过对系统状态与未知扰动进行实时的观测和有效的补偿,提高了黑体辐射源的控温品质。
Abstract:
A blackbody radiation source is used in infrared image system calibration, which requires a stable and uniform temperature field over the large cavity surface area in practical applications. In order to achieve this and improve the precision of temperature control, a temperature control system is designed and implemented on the basis of active disturbance rejection control (ADRC). First, based on a mathematical model of blackbody radiation source, the ADRC control algorithm is executed in MATLAB/Simulink environment and compared with the traditional PID and Smith predictor control algorithm. The simulation results show that the proposed ADRC algorithm possesses the features of fast response, high precision and positive set point tracking. Then, graphical programming using LabVIEW software is performed for digital discretization of the ADRC algorithm. Finally, temperature control and experimental data acquisition of the blackbody radiation source are implemented using the Compact RIO real-time controller. The experiment results show that the temperature control system has improved the performance of the blackbody radiation source, providing a temperature stability better than 0.03℃/10 min. In addition, the algorithm has a good rapidity and strong robustness to uncertainties. The temperature control of the blackbody radiation source is improved by real-time observation and effective compensation of the system state and unknown disturbances.

参考文献/References:

[1] 杜玉良. 大面积辐射源的理论设计[D]. 长春: 长春理工大学, 2008.
DU Yuliang. Theoretical design of large-area radiation source[D]. Changchun: Changchun University of Science and Technology, 2008.
[2] 王景辉, 原遵东, 柏成玉, 等. 前置反射罩氨热管黑体辐射源[J]. 光电子?激光, 2015, 26(5): 852-856.
WANG Jinghui,YUAN Zundong, BAI Chenyu,et al. An ammonia heat-pipe blackbody source with front reflector[J]. Journal of Optoelectronics?Laser, 2015, 26(5): 852-856.
[3] 吴恩启, 徐紫红, GUO Xinxin. 光热辐射技术测量钴涂层热学参数及厚度[J]. 光电子?激光, 2015, 26(8): 1543-1548.
WU Enqi, XU Zihong, GUO Xinxin. Thermal parameters and thickness measurement of cobalt coating using photothermal radiometry[J]. Journal of Optoelectronics ? Laser, 2015, 26(8): 1543-1548.
[4] GU D Z, Walker D K. Microwave radiometry of blackbody radiation[C]//Processing of Conference on precision Electromagnetic Measurements, 2016: 1-2.
[5] Sondhi S, Hote Y V.? Fractional order PID controller for load frequency control[J]. Energy Conversion & Management, 2014, 85(9): 313-353.
[6] Bedrich K G, Luo W, Pravettoni M, et al. Quantitative Electroluminescence Imaging Analysis for Performance Estimation of PID-Influenced PV Modules[J]. IEEE Journal of Photovoltaics, 2018, 8: 1281-1288.
[7] ZHANG F, LI Z. Design of fractional PID control system for BLDC motor based on FPGA[C]//2018 Chinese Control And Decision Conference (CCDC), 2018: 2293-2296.
[8] HE J, ZHANG X. Comparison of the back-stepping and PID control of the three-phase inverter with fully consideration of implementation cost and performance[C]//Chinese Journal of Electrical Engineering, 2018, 4(2): 82-89.
[9] 韩京清. 自抗扰控制器及其应用[J]. 控制与决策, 1998, 13(1): 19-23.
HAN Jingqing. Active disturbance rejection controller and its application[J]. Control and Decision, 1988, 13(1): 19-23.
[10] 韩京清. 自抗扰控制技术―估计补偿不确定因素的控制技术[M]. 北京: 国防工业出版社, 2008.
HAN Jingqing. Active Disturbance Rejection Control Technique the Technique for Estimating and Compensating the Uncertainties[M]. Beijing: National Defense Industry Press, 2008.
[11] HAN J. From PID to active disturbance rejection control[J]. IEEE Transactions on Industrial Electronics, 2009, 56(3): 900-906.
[12] 李杰, 齐晓慧, 万慧, 等. 自抗扰控制: 研究成果总结与展望[J]. 控制理论与应用, 2017, 34(3): 281-295.?
LI Jie, QI Xiaohui, WAN Hui, et al. Active disturbance rejection control: theoretical results summary and future researches[J]. Control theory and application, 2017, 34(3): 281-195.?
[13] Caifen Fu, WEN Tan. Control of unstable processes with time delays via ADRC[J]. ISA Transactions, 2017.
[14] 金辉宇, 张瑞青, 王雷, 等. 线性自抗扰控制参数整定鲁棒性的根轨迹分析[J]. 控制理论与应用, 2018, 35: 1-6.
JIN Huiyu, ZHANG Ruiqing, WANG Lei, et al. Root locus analysis on parameter tuning robustness of linear active disturbance rejection control [J]. Control theory and application, 2018, 35: 1-6.
[15] 王铁军, 原遵东, 段宇宁, 等. BF-50B黑体辐射源标准装置的研制[J]. 现代科学仪器, 2003(4): 23-25.
WANG Tiejun, YUAN Zundong, DUAN Yuning, et al. BF-50B Blackbody Radiator[J]. Modern Scientific Instrument, 2003(4): 23-25.
[16] 星河, 张少辉, 李自强, 等. 一种用于矩阵变换器的简化非线性自抗扰控制策略[J]. 电力系统保护与控制, 2018, 46(10): 48-54.
XING He, ZHANG Shaohui, LI Ziqiang, et al. A simplified nonlinear auto disturbance rejection control strategy for matrix converter[J]. Power System Protection and control, 2018, 46(10): 48-54.
[17] 刘德君, 郭庆鼎, 翁秀华. 基于自抗扰控制器的交流直线永磁同步伺服电机速度控制系统[J]. 电气传动, 2005(9): 36-38.
LIU Dejun, GUO Qingding, WENG Xiuhua. Speed control system of AC Linear Permanent Magnet Synchronous Servo Motor Based on Auto-disturbance Rejection Controller[J]. Electric Drive, 2005(9): 36-38.
[18] 白美卿, 高富强. 关于炉温动态特性的分析[J]. 冶金自动化, 1994(4): 8-10,17.
BAI Meiqin, GUO Fuqiang. The distinguishing features of dynamic temperature characteristics of the heated furnace[J]. Metallurgical automation, 1994(4): 8-10, 17.
[19] WANG Z, LI X, LU X. Temperature control based on a single neuron PID algorithm for a blackbody radiation source[C]//2017 IEEE International Conference on Mechatronics and Automation (ICMA), 2017: 220-225.
[20] 唐璐. 黑体炉炉温模糊自适应PID控制研究[D]. 长沙: 中南大学, 2008.
TANG Lu. Research on fuzzy adaptive PID control of blackbody furnace temperature[D]. Changsha: Central South University, 2008.

备注/Memo

备注/Memo:
收稿日期:2018-08-01;修订日期:2018-12-19.
作者简介:云泽荣(1991-),男,苗族,贵州安龙县人,硕士研究生,主要研究方向为能源系统与控制、红外辐射测温技术及其应用。E-mail:Yunzr1218@163. com。

更新日期/Last Update: 2019-03-19