[1]凡遵林管乃洋,王之元,苏龙飞.红外图像质量的提升技术综述[J].红外技术,2019,41(10):941-946.[doi:doi:10.11846/j.issn.1001_8891.201910009]
 FAN Zunlin,GUAN Naiyang,WANG Zhiyuan,et al.Infrared Image Quality Improvement Technology: a Review[J].Infrared Technology,2019,41(10):941-946.[doi:doi:10.11846/j.issn.1001_8891.201910009]
点击复制

红外图像质量的提升技术综述
分享到:

《红外技术》[ISSN:1001-8891/CN:CN 53-1053/TN]

卷:
41卷
期数:
2019年第10期
页码:
941-946
栏目:
出版日期:
2019-10-21

文章信息/Info

Title:
Infrared Image Quality Improvement Technology: a Review
文章编号:
1001-8891(2019)10-0941-06
作者:
凡遵林12管乃洋12王之元12苏龙飞12
1. 军事科学院国防科技创新研究院,北京 100073;2. 天津(滨海)人工智能军民融合创新中心,天津 300457
Author(s):
FAN Zunlin12GUAN Naiyang12WANG Zhiyuan12SU Longfei12
1. National Innovation Institute of Defense Technology, Beijing 100073, China;
2. Tianjin Arti?cial Intelligence Innovation Center, Tianjin 300457, China
关键词:
红外图像质量提升技术细节和边缘增强对比度提升噪声抑制
Keywords:
infrared image quality improvement technology detail and edge enhancement contrast enhancement noise suppression
分类号:
TP391
DOI:
doi:10.11846/j.issn.1001_8891.201910009
文献标志码:
A
摘要:
由于红外热成像仪成像原理的局限性和大气环境的干扰,一般红外图像质量较低,具体表现为:空间分辨率低、对比度低、边缘模糊、细节缺失和易受噪声干扰等。本文从增强细节和边缘、提升图像对比度和抑制背景干扰3个方面,综述了红外图像质量提升技术的研究现状,并阐述了分析和提取图像低层结构是其发展趋势,对其他图像处理领域具有一定的借鉴意义。
Abstract:
As the principle of thermal imager and the interferences atmospheric environment, general infrared images suffer from inferior image qualities including low spatial resolution, low image contrast, blurred edges, detail loss and disturbances due to background noise. Therefore, to enhance details and edges, improve image contrast and suppress background interference, we review the research status of infrared image quality improvement technology and expound that analyzing and extracting low-level structure of image is its development trend in this paper. This review can be used as a reference in other areas of image processing.

参考文献/References:

[1] James D. Thermal imaging systems modeling: present status and future challenges[C]//Proceedings of SPIE, 1994, 2269: 538-550.
[2] FANZ, BI D, GAO S, et al. Adaptive enhancement for infrared image using shearlet frame[J]. Journal of Optics, 2016, 18: 085706.
[3] FAN Z, BI D, DING W. Infrared image enhancement with learned features[J]. Infrared Physics & Technology, 2017, 86: 44-51.
[4] Janani V, Dinakaran M. Infrared image enhancement techniques - a review[C]//IEEE International Conference on Current Trends in Engineering and Technology, 2014: 167-173.
[5] Morris N, Avidan S, Matusik W, et al. Statistics of infrared images[C]//IEEE Conference on Computer Vision and Pattern Recognition, 2007: 1-7.
[6] Ramponi G, Polesel A. Rational unsharp masking[J]. Journal of Electron Imaging, 1998, 7(2): 333-338.
[7] Archana J, Aishwarya P. A review on the image sharpening algorithm using unsharp masking[J]. International Journal of Engineering Science and Computing, 2016, 6(7): 8729-8733.
[8] FAN Z, BI D, XIONG L, et al. Infrared image enhancement based on novel multi-scale feature prior[J]. Optical Engineering, 2017, 56: 043101.
[9] Ferrari J, Flores J, Perciante C, et al. Edge enhancement and image equalization by unsharp masking using self-adaptive photochromic filters[J]. Applied Optics, 2009, 48(19): 3570-3579.
[10] ZUO C, CHEN Q, LIU N, et al. Display and detail enhancement for high-dynamic-range infrared images[J]. Optical Engineering, 2011, 50(12): 127401.
[11] Branchitta F, Diani M, Corsini G, et al. Dynamic-range compression and contrast enhancement in infrared imaging systems[J]. Optical Engineering, 2008, 47(7): 076401.
[12] Branchitta F, Diani M, Corsini G, et al. New technique for the visualization of high dynamic range infrared images[J]. Optical Engineering, 2009, 48(9): 096401.
[13] HE K, SUN J, TANG X. Guided image filtering[C]//Proceedings of the 11th European Conference on Computer Vision (ECCV), Springer Berlin, Heidelberg, 2011: 1-14.
[14] Pham C, Ha S, Jeon J. Adaptive guided image filtering for sharpness enhancement and noise reduction [C]//PSIVT 2011, Part I, 2011, 7087: 323-334.
[15] LIU N, ZHAO D. Detail enhancement for high-dynamic-range infrared images based on guided image filter [J]. Infrared Physics & Technology, 2014, 67: 138-147.
[16] Ploesel A, Ramponi G, Mathews V. Image enhancement via adaptive unsharp masking[J]. IEEE Transactions on Image Processing, 2000, 3(9): 505-510.
[17] BAI X. Morphological infrared image enhancement based on multi-scale sequential toggle operator using opening and closing as primitives[J]. Infrared Physics & Technology, 2015, 68: 143-151.
[18] BAI X. Microscopy mineral image enhancement through center operator construction[J]. Applied Optics, 2015, 54: 4678-4688.
[19] BAI X, ZHOU F. Analysis of new top-hat transformation and the application for infrared dim small target detection[J]. Pattern Recognition, 2010, 43(6): 2145-2156.
[20] CHENG H, CHEN Y, SUN Y. A novel fuzzy entropy approach to image enhancement and thresholding[J]. Signal Processing, 1999, 75(3): 277-301.
[21] Hanmandlu M, Jha D. An optimal fuzzy system for color image enhancement[J]. IEEE Transactions on Image Processing, 2006, 15(10): 2956-2966.
[22] Morel J, Petro A, Sbert C. What is the right center/surround for Retinex?[C]//IEEE International Conference on Image Processing, 2014: 4552-4556.
[23] CHEN Z, TAI S. Corrected center-surround retinex: application to tone reproduction for high dynamic range image [J]. International Journal of Computers and Applications, 2015, 37(1): 37-51.
[24] 温海滨. 基于局部正则先验的Retinex红外图像细节增强方法研究[D]. 西安: 空军工程大学, 2017.
WEN H. Research on infrared image enhancement with Retinex based on local regular prior [D]. Xi’an: Air Force Engineering University, 2017.
[25] 刘斌, 金伟其, 王岭雪, 等. 基于空域和频域处理的红外图像细节增强算法[J]. 红外技术, 2011, 33(8): 477-482.
LIU B, JIN W, WANG L, et al. Infrared image detail enhancement based on the spatial and frequency domain processing [J]. Infrared Technology, 2011, 33(8): 477-482.
[26] 穆为磊, 高建民, 陈富民, 等. 符合人眼视觉特性的焊缝射线数字图像增强方法[J]. 西安交通大学报, 2012, 46(3): 90-93.
MU W, GAO J, CHEN F, et al. Weld radiographic image enhancement conforming to human visual system[J]. Journal of Xi’an Jiaotong University, 2012, 46(3): 90-93.
[27] 龚昌来, 罗聪, 杨冬涛, 等. 基于正弦灰度变换的红外图像增强算法[J]. 激光与红外, 2013, 43(2): 200-203.
GONG C, LUO C, YANG D, et al. Infrared image enhancement based on sine gray level transformation[J]. Laser & Infrared, 2013, 43(2): 200-203.
[28] 凡遵林, 毕笃彦, 马时平, 等. 亮度保持和细节增强的红外图像增强方法[J]. 中南大学学报: 自然科学版, 2016, 47: 1967-1972.
FAN Z, BI D, MA S, et al. Method for infrared image with brightness preservation and detail enhancement[J]. Journal of Central South University: Science and Technology, 2016, 47: 1967-1972.
[29] YANG L, YANG J, YANGK. Adaptive detection for infrared small target under sea-sky complex background[J]. Electronics Letters, 2004, 40(19): 1083-1085.
[30] ZHENG C, H. Li. Small infrared target detection based on harmonic and sparse matrix decomposition[J]. Optical Engineering, 2013, 52(6): 066401.
[31] ZHANG B, ZHANG T, CAO Z. Fast new small-target detection algorithm based on a modified partial differential equation in infrared clutter[J]. Optical Engineering, 2007, 46(10): 106401.
[32] FANZ, BI D, HE L, et al. Noise suppression and details enhancement for infrared image via novel prior [J]. Infrared Physics & Technology, 2016, 84: 44-52.
[33] 唐麟, 刘琳, 苏君红. 红外图像噪声建模及仿真研究[J]. 红外技术, 2014, 36(7): 542-548.
TANG L, LIU L, SU J. Modeling and simulation research of infrared image noise [J]. Infrared Technology, 2014, 36(7): 542-548.
[34] Gilboa G, Sochen N, Zeevi Y. Forward-and-backward diffusion processes for adaptive image enhancement and denoising[J]. IEEE Transactions on Image Processing, 2002, 11(7): 689-703.
[35] Brox T, Weickert J. Nonlinear structure tensors[J]. Image and Vision Computing, 2006: 41-55.
[36] Gilboa G, Sochen N, Zeevi Y. Variational denoising of partly textured images by spatially varying constraints [J]. IEEE Transactions on Image Processing, 2006, 15(8): 2281-2289.
[37] Farbman Z, Fattal R, Lischinski D, et al. Edge-preserving decom- positions for multi-scale tone and detail manipulation[C]//Proc. of ACM Siggraph, 2008: DOI: 10.1145/1360612.1360666.
[38] XU L, LU C, XU Y, et al. Image smoothing via L0 gradient minimization[C]//ACM Trans. Graph, 2010, 30(6): 174.
[39] Buades A, Coll B, Morel J. A non-local algorithm for image denoising[C]//IEEE International Conference on Computer Vision, 2005: 60-65.
[40] Dabov K, Foi A, Katkovnik V, et al. Image denoising by sparse 3D transform-domain collaborative filtering[J]. IEEE Transaction on Optical Engineering, 2007, 16(8): 2080-2095.
[41] ZHANG L, DONGW, ZHANG D, et al. Two-stage image denoising by principal component analysis with local pixel grouping[J]. Pattern Recognition, 2010, 43(4): 1531-1549.
[42] Elad M, Aharon M. Image denoising via sparse and redundant representations over learned dictionaries[J]. IEEE Transaction on Image Processing, 2006, 15(12): 3736-3745.
[43] Chatterjee P, Milanfar P. Clustering-based denoising with locally learned dictionaries[J]. IEEE Transaction on Image Processing, 2009, 18(7): 1438-1451.
[44] LIU G, LIN Z, YAN S, et al. Robust recovery of subspace structure buy low-rank representation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 171-184.
[45] Vincent P, Larochelle H, Lajoie I, et al. Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion[J]. Journal of Machine Learning Research, 2010, 11(12): 3371-3408.
[46] Burger H, Schuler C, Harmeling S. Image denoising: can plain neural networks compete with BM3D?[C]//IEEE Conference on Computer Vision and Pattern Recognition, 2012: 2392-2399.
[47] FAN Z, BI D, HEL, et al. Low-level structure feature extraction for image processing via stacked sparse denoising autoencoder[J]. Neurocomputing, 2017, 243: 12-20.
[48] JAIN V, Seung H. Natural image denoising with convolutional networks[C]//Proceedings of the 21st International Conference on Neural Information Processing Systems, 2008: 769-776.
[49] ZHANG K, ZUO W, CHEN Y, et al. Beyond a gaussion denoiser: residual learning of deep CNN for image denoising[J]. IEEE Transaction on Image Processing, 2017, 26(7): 3142-3155.
[50] FAN Z, BI D, HEL, et al. Dim infrared image enhancement based on convolutional neural network[J]. Neurocomputing, 2017, 272: 396-404.

备注/Memo

备注/Memo:
收稿日期:2018-07-23;修订日期:2018-08-16.
作者简介:凡遵林(1991-),男,博士,主要从事红外技术、光电图像处理和计算机视觉等方面的研究。E-mail:18191261397@163.com。
基金项目:国家自然科学基金“基于对抗生成网络的雾霾图像复原方法研究”(61701524)。
更新日期/Last Update: 2019-10-23