[1]杨亮亮,沈法华,刘成林,等.含有双层衍射光学元件的红外双波段无热化光学系统的设计[J].红外技术,2019,41(8):699-704.[doi:10.11846/j.issn.1001_8891.201908002]
 YANG Liangliang,SHEN Fahua,LIU Chenglin,et al.Athermal Design of Infrared Dual-band Optical System with Double-layer Diffractive Optical Elements [J].Infrared Technology,2019,41(8):699-704.[doi:10.11846/j.issn.1001_8891.201908002]
点击复制

含有双层衍射光学元件的红外双波段无热化光学系统的设计
分享到:

《红外技术》[ISSN:1001-8891/CN:CN 53-1053/TN]

卷:
41卷
期数:
2019年第8期
页码:
699-704
栏目:
出版日期:
2019-08-21

文章信息/Info

Title:
Athermal Design of Infrared Dual-band Optical System with
Double-layer Diffractive Optical Elements
文章编号:
O439
作者:
杨亮亮沈法华刘成林童巧英
盐城师范学院 新能源与电子工程学院,江苏 盐城 224007
Author(s):
YANG LiangliangSHEN FahuaLIU ChenglinTONG Qiaoying
School of New Energy and Electronics Engineering, Yancheng Teachers University, Yancheng 224007, China
关键词:
光学设计红外双波段双层衍射光学元件衍射效率
Keywords:
optical design infrared dual-band double-layer diffractive optical element diffraction efficiency
分类号:
1001-8891(2019)08-0699-06
DOI:
10.11846/j.issn.1001_8891.201908002
文献标志码:
A
摘要:
建立了工作在一定入射角度范围内的多层衍射光学元件的复合带宽积分平均衍射效率的分析模型。基于衍射光学元件所具有的独特的消色差和消热差性质,设计了一个含有双层衍射光学元件的工作在3.7~4.8 ?mm和7.7~9.5  mm红外双波段光学系统。光学系统的焦距为100 mm,F#为2,采用像元数为640×512、间距为15 ?mm的制冷型探测器。该系统在空间频率33 lp/mm时,中、长波红外MTF分别高于0.52和0.16,最大RMS半径小于9.88  mm,波前像差小于0.0705l,最大离焦量小于焦深,在-40℃~71℃范围内实现了无热化设计。系统中采用的双层衍射光学元件在红外双波段的带宽积分平均衍射效率高于99.15%。入射到衍射面上的角度为0°~10°,该双层衍射光学元件在中波和长波波段的复合带宽积分平均衍射效率分别为97.70%和96.95%。
Abstract:
The analysis model of comprehensive bandwidth integrated average diffraction efficiency of multilayer diffractive optical elements (MLDOEs) operating within a range of incident angle was established. Based on the special characteristics of achromatism and athermalization of diffractive optical elements (DOEs), an infrared dual-band optical system with double-layer DOEs operating in the range of 3.7–4.8 mm and 7.7-9.5 ?mm wavebands was designed. The effective focal length of the optical system is 88 mm; F # is 2;the cooled focal plane array is 640´512, and the pixel pitch is 15 mm. MTF of the designed system were above 0.52 and 0.16 for the MWIR and LWIR, respectively, at a spatial frequency of 33 lp/mm, the maximal RMS radius was less than 9.88 m?m, the wavefront error was smaller than 0.0705l? and the maximal defocus was less than focus depth, and therefore, the designed optical system realized athermalization over the temperature range from ?40℃ to 71℃. The bandwidth-integrated average diffraction efficiency of double-layer DOEs adopted by the proposed system for the two wavebands was more than 99.15%. The incident angle on the diffractive surface was within the range of 0°–10°, the overall bandwidth-integrated average diffraction efficiency of the double-layer DOEs were 97.70% and 96.95% for the MWIR and LWIR wavebands, respectively.

参考文献/References:

[1] Michael D Missig, Michael Morris G. Diffractive optics applied to eyepiece design[J]. Appl. Opt., 1995, 34(14): 2452-2461.
[2] Andrew P Wood, Philip J Rogers. Diffractive optics in modern optical engineering[J]. Proc. of SPIE, 2005, 5865: 83-97.
[3] 崔庆丰. 折衍混合成像光学系统设计[J]. 红外与激光工程, 2006, 35(1): 12-16.
CUI Qingfeng. Design of hybrid diffractive-refractive imaging optical systems[J]. Infrared and Laser Engineering, 2006, 35(1): 12-16.
[4] 裴雪丹, 崔庆丰, 冷家开. 入射角对双层衍射光学元件衍射效率的影响[J]. 光学学报, 2009, 29(1): 120-125.
PEI Xuedan, CUI Qingfeng, LENG Jiakai. Effect of incident angle on diffraction efficiency of a two-layer diffractive optical element[J]. Acta Optica Sinica, 2009, 29(1): 120-125.
[5] 薛常喜, 崔庆丰, 潘春艳, 等. 基于带宽积分平均衍射效率的多层衍射光学元件设计[J]. 光学学报, 2010, 30(10): 3016-3020.
XUE Changxi, CUI Qingfeng, PAN Chunyan, et al. Design of multi-layer diffractive optical element with bandwidth integral average diffraction efficiency[J]. Acta Optica Sinica, 2010, 30(10): 3016-3020.
[6] Hideaki Ogawa, Takehiko Nakai. The folded optical element of the accumulated layer[J]. Photo Industry, 2000, 58(12): 72-76.
[7] JIANG Yanru, WANG Jing, XIE Qingkun, et al. Athermal design of refractive/diffractive hybrid infrared optical system[J]. Optik, 2017, 131: 592-597.
[8] 江伦, 胡源, 董科研, 等. 红外双波段光学系统被动式消热差设计[J]. 红外与激光工程, 2015, 44(11): 3353-3357.
JIANG Lun, HU Yuan, DONG Keyan, et al. Passive athermal design of dual-band infrared optical system[J]. Infrared and Laser Engineering, 2015, 44(11): 3353-3357.
[9] 陶郅, 王敏, 肖维军, 等. 折/衍混合大视场消热差红外双波段光学系统设计[J]. 光子学报, 2017, 46(11): 1122004.
TAO Zhi, WANG Min, XIAO Weijun, et al. Design for cooled dual-band infrared refractive-diffractive hybrid optical system of athermalization and wide FOV[J]. Acta Optica Sinica, 2017, 46(11): 1122004.
[10] 范长江, 王肇圻, 吴环宝, 等. 红外双波段双层谐衍射光学系统设计[J]. 光学学报, 2007, 27(7): 1266-1270.
FAN Changjiang, WANG Zhaoqi, WU Huanbao, et al. The design of infrared dual-band double-layer harmonic diffractive optical system[J]. Acta Photonica Sinica, 2007, 27(7): 1266-1270.
[11] 杨亮亮. 多层衍射光学元件斜入射衍射效率的测量[J]. 光学学报, 2017, 37(2): 0205003.
YANG Liangliang. Measurement of diffraction efficiency for multi-layer diffractive optical elements with oblique incidence[J]. Acta Optica Sinica, 2017, 37(2): 0205003.
[12] 孟庆超, 潘国庆, 张运强, 等. 红外光学系统的无热化设计[J]. 激光与红外, 2008, 37(s): 723-727.
MENG Qingchao, PAN Guoqing, ZHANG Yunqiang, et al. Design of athermalizing infrared optical system[J]. Laser & Infrared, 2008, 37(s): 723-727.

相似文献/References:

[1]惠彬,刘雁杰,李景镇,等.800万像素折衍混合式手机镜头设计[J].红外技术,2013,35(04):223.
 HUI Bin,LIU Yan-Jie,LI Jing-Zhen,et al. Optical Design of 8 Mega-pixel Hybrid Diffractive-refractive Mobile Phone Lens[J].Infrared Technology,2013,35(8):223.
[2]刘秀军,张金旺,彭垚. 中波红外光学系统无热化设计[J].红外技术,2012,34(10):602.
 LIU Xiu-jun,ZHANG Jin-wang,PENG Yao. Athermal Design of a MWIR Optical System[J].Infrared Technology,2012,34(8):602.
[3]陈吕吉,李萍,孙琪艳.20长波红外连续变焦光学系统设计[J].红外技术,2012,34(08):458.
 CHEN Lv-ji,LI Ping,SUN Qi-yan.Design of LWIR Zoom Optical System with 20:1 Zoom Range[J].Infrared Technology,2012,34(8):458.
[4]杜玉楠,牟 达,刘莹莹,等.20长波红外变焦光学系统设计[J].红外技术,2013,35(10):607.[doi:10.11846/j.issn.1001_8891.201310002]
 DU Yu-nan,MU Da,LIU Ying-ying,et al.Design of 20Long Wavelength Infrared Zoom Optical System[J].Infrared Technology,2013,35(8):607.[doi:10.11846/j.issn.1001_8891.201310002]
[5]明名.拼接镜主动光学中子镜曲率半径偏差分析[J].红外技术,2013,35(12):803.[doi:10.11846/j.issn.1001_8891.201312011]
 MING Ming.Analysis of Curvature Radius Departure in Active Optics with Segmented Mirror[J].Infrared Technology,2013,35(8):803.[doi:10.11846/j.issn.1001_8891.201312011]
[6]闫佩佩,樊学武.R-C光学系统设计及杂散光分析[J].红外技术,2011,33(04):214.
 YAN Pei-pei,FAN Xue-wu.Optical Design and Stray Light Analysis of R-C System[J].Infrared Technology,2011,33(8):214.
[7]吴海清,王海霞,赵新亮,等.双波段/双视场红外光学系统设计[J].红外技术,2010,32(11):640.
 WU Hai-qing,WANG Hai-xia,ZHAO Xin-liang,et al.Design of Dual-band/Dual-filed IR Optical System[J].Infrared Technology,2010,32(8):640.
[8]刘钧,李珂,赵文才.塑料非球面与折/衍面混合微光夜视物镜设计[J].红外技术,2010,32(11):666.
 LIU Jun,LI Ke,ZHAO Wen-cai.Design of Hybrid Refractive-Diffractive and Plastic AsphericalSurfaces Objective Lens for Low-Light-Level Night Vision[J].Infrared Technology,2010,32(8):666.
[9]杨波,刘成林,丁学专,等.使用ZPL宏指令辅助设计离轴三反射镜系统[J].红外技术,2010,32(10):559.
 YANG Bo,LIU Cheng-lin,DING Xue-zhuan,et al.Design of Off-Axis TMA System with ZPL in ZEMAX[J].Infrared Technology,2010,32(8):559.
[10]张莹昭,白玉琢,丁黎梅,等.折射/衍射长焦距红外系统的设计[J].红外技术,2010,32(6):315.
 ZHANG Ying-zhao,BAI Yu-zhuo,DING Li-mei,et al.A Design Of Long Focal Length Refractive/Diffractive IR System[J].Infrared Technology,2010,32(8):315.

备注/Memo

备注/Memo:
收稿日期:2018-07-11;修订日期:2019-06-24.
作者简介:杨亮亮(1986-),女,讲师,博士,主要从事衍射光学和光学设计方面的研究。E-mail:yang_liangliang@163.com。
基金项目:江苏省自然科学基金面上项目(BK20161316);中国科学院大气光学重点实验室开放课题创新基金(2017-01)。
更新日期/Last Update: 2019-08-20