[1]戴立群,唐绍凡,徐丽娜,等.从可见光到热红外全谱段探测的星载 多光谱成像仪器技术发展概述 [J].红外技术,2019,41(2):107-117.[doi:10.11846/j.issn.1001_8891.201902002]
 DAI Liqun,TANG Shaofan,XU Lina,et al.Development Overview of Space-borne Multi-spectral Imager with Band Range from Visible to Thermal Infrared[J].Infrared Technology,2019,41(2):107-117.[doi:10.11846/j.issn.1001_8891.201902002]
点击复制

从可见光到热红外全谱段探测的星载
多光谱成像仪器技术发展概述
分享到:

《红外技术》[ISSN:1001-8891/CN:CN 53-1053/TN]

卷:
41卷
期数:
2019年第2期
页码:
107-117
栏目:
出版日期:
2019-02-22

文章信息/Info

Title:
Development Overview of Space-borne Multi-spectral Imager with Band Range from Visible to Thermal Infrared
文章编号:
1001-8891(2019)02-0107-11
作者:
戴立群唐绍凡徐丽娜孙启扬杨晓博王智谋金占雷赵艳华
北京空间机电研究所,北京 100094
Author(s):
DAI LiqunTANG ShaofanXU LinaSUN QiyangYANG XiaoboWANG ZhimouJIN ZhanleiZHAO Yanhua
Beijing Institute of Space Mechanics & Electricity, Beijing 100094, China
关键词:
可见光红外星载多光谱成像全谱段光谱成像仪
Keywords:
visibleinfraredspace-bornemulti-spectral imageVIMI
分类号:
TN21
DOI:
10.11846/j.issn.1001_8891.201902002
文献标志码:
A
摘要:
从可见光到热红外的全谱段探测的多光谱成像仪器能够同时对可见光、近红外、短波红外、中波红外、长波红外光谱范围内的多个谱段进行探测,是目前得到广泛研究及应用的成像光谱仪器。这类仪器在国土资源、环境监测、城市遥感、海洋监管等方面均有较高的应用价值。本文概述了此类仪器的国内外研究发展现状,对国外Landsat系列载荷、MODIS、国内的资源系列载荷、高分五号全谱段光谱成像仪等代表性仪器的技术指标和特点进行了总结。通过分析认为更加全面和精细的光谱覆盖、成像方式的改进与技术指标提高、定标手段和定量化水平提高、数据的持续性及稳定性是未来发展的趋势。
Abstract:
A multi-spectral imager with a band range from visible to thermal infrared is a type of imaging spectrometry instrument that can detect multi bands of VIS, NIR, SWIR, MWIR, and LWIR radiation, and it attracts extensive study and has wide applications. It is highly valuable in many applications such as land resources surveys, environmental monitoring, urban remote sensing, and marine supervision. The domestic and international development of such an instrument is outlined in this paper. This paper also summarizes the technical parameters and characteristics of representative instruments including Landsat series, MODIS, CBERS series, and VIMI. Data continuity and stability, increased specification, wide spectral coverage, and improved quantitative applications are the future trends of such technology.

参考文献/References:

[1] 苏丽娟. 成像光谱仪分光技术研究[D]. 西安: 中国科学院西安光学精密机械研究所, 2006: 1-2.
SU Lijuan. The Beam Splitting Technologies of Imaging Spec- troscopy[D]. Xi’an: Institute of Optics and Precision Mechanics, Chinese Academy of Science, 2006: 1-2.
[2] 李欢, 周峰. 星载超光谱成像技术发展与展望[J]. 光学与光电技术, 2012, 10(5): 38-44.
LI Huan, ZHOU Feng. Developments of spaceborne hyperspectral imaging technique[J]. Optics & Optoelectronic Technology, 2012, 10(5): 38-44.
[3] Thomas S Pagano, Rodney M Durham. Moderate resolution imaging spectroradiometer(MODIS)[C]// SPIE, 1993, 1939: 2-17.
[4] Barnes W. An overview of MODIS radiometric calibration and characterization[J]. Advances in Atmospheric Sciences, 2006, 23(1): 69-79.
[5] XIONG X, Angal A, WU A, et al. Terra and Aqua MODIS instrument performance[C]//Geoscience and Remote Sensing Symposium Of IEEE, 2016: 7388-7391.
[6] XIONG X, CHE N, Barnes W L. Terra MODIS on-orbit spectral characterization and performance[J]. IEEE Transactions on Geoscience & Remote Sensing, 2006, 44(8): 2198-2206.
[7] 唐绍凡, 邓德斌, 王健. 资源后继星短波红外器件需求分析[J]. 红外与激光工程, 2007, 36(z1): 137-140.
TANG Shaofan, DENG Debin, WANG Jian. Earth resources subsequence satellite short-wave infrared FPA speciality analysis[J]. Infrared and Laser Engineering, 2007, 36(z1): 137-140.
[8] 张庆君, 马世俊. 中巴地球资源卫星成就与发展[J]. 航天器工程, 2009, 18(4): 1-8.
ZHANG Qingjun, MA Shijun. Achievements and progress of China-Brazil earth resource satellite[J]. Spacecraft Engineering, 2009, 18(4): 1-8.
[9] 马文坡. 红外多光谱扫描仪设计与评价[J]. 红外技术, 2002, 24(5): 1-4.
MA Wenpo. Design and evaluation of IRMSS[J]. Infrared Technology, 2002, 24(5): 1-4.
[10] 熊文成, 魏斌, 孙中平, 等. 基于环境一号卫星B星CCD与红外相机融合的澳洲火灾监测[J]. 遥感技术与应用, 2010, 25(2): 178-182.
XIONG Wencheng, WEI Bin, SUN Zhongping, et al. Australian forest fire disaster monitoring based on CCD and IRS data of HJ-1-B[J]. Remote Sensing Technology and Application, 2010, 25(2): 178-182.
[11] QIAO W, WU C Q, LI Q, et al. Chinese HJ-1A/B satellites and data characteristics[J]. Science China Earth Sciences, 2010, 53(s1): 51-57.
[12] 白照广, 李一凡, 杨文涛. 中国海洋卫星技术成就与展望[J]. 航天器工程, 2008, 17(4): 17-23.
BAI Zhaoguang, LI Yifan, YANG Wentao. Achievements and prospect of China’s ocean satellites[J]. Spacecraft Engineering, 2008, 17(4): 17-23.
[13] JIN Y Q, LU N, LIN M. Advancement of Chinese meteorological Feng-Yun (FY) and oceanic Hai-Yang (HY) satellite remote sensing[J]. Proceedings of the IEEE, 2010, 98(5): 844-861.
[14] 陈桂林, 栾炳辉. FY-2C星多通道扫描辐射计及其在轨运行[J]. 上海航天, 2005, 22(z1): 21-27.
CHEN Guilin, RUAN Binhui. Multichannel scanning radiometer of FY-2C meteorological satellite and its on-orbit operation[J]. Aerospace Erospace Shanghai, 2005, 22(z1): 21-27.
[15] Thome Kurtis, Tesfaye Zelalem, Smith Ramsey, et al. The operational land imager (OLI) and the thermal infrared sensor (TIRS) on the landsat data continuity mission (LDCM) [C]//SPIE, 2011, 8048: 1-12.
[16] Gupta R P. Important spaceborne missions and multispectral sensors[M]// Remote Sensing Geology, 2018.
[17] Kuenzer C, GUO H, Ottinger M, et al. Spaceborne thermal infrared observation – an overview of most frequently used sensors for applied research[M]//Thermal Infrared Remote Sensing, Springer Netherlands, 2013: 131-148.
[18] 赵秋艳. 几种新型的星载多光谱和成像光谱仪[J]. 航天返回与遥感, 2002, 23(1): 36-41.
ZHAO Qiuyan. Introduction of several multi-spectral and imaging spectrometers for satellites[J]. Spacecraft Recovery & Remote Sensing, 2002, 23(1): 36-41.
[19] Chander G, Markham B L, Helder D L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors[J]. Remote Sensing of Environment, 2009, 113(5): 893-903.
[20] Markham B L, Knight E J, Canova B, et al. The Landsat data continuity mission operational land imager (OLI) sensor[C]//Geoscience and Remote Sensing Symposium of IEEE, 2012: 6995-6998.
[21] Markham B, Barsi J, Kvaran G, et al. Landsat-8 operational land imager radiometric calibration and stability[J]. Remote Sensing, 2014, 6(12): 12275-12308.
[22] Barsi J, Schott J, Hook S, et al. Landsat-8 thermal infrared sensor (TIRS) vicarious radiometric calibration[J]. Remote Sensing, 2014, 6(11): 11607-11626.
[23] Rex R Kay, Brian C Brock, Tammy D Henson, et al. An introduction to the department of energy’s multispectral thermal imager (MTI) project emphasizing the imaging and calibration subsystems[C/OL]//12th AIAA/USU Conference on Small Satellites, https://www. researchgate. net/publication/ 267419955_An_Introduction_to _the_Department_ of_ Energy%27s_Multispectral_Thermal_Imager_MTI_Project_Emphasizing_the_Imaging_and_Calibration_Subsystems.
[24] Weber P G. Multispectral thermal imager: overview[J]. Proceedings of SPIE, 2001, 4381:173-183.
[25] Szymanski J J, Weber P G. Multispectral thermal imager: mission and applications overview[J]. IEEE Transactions on Geoscience & Remote Sensing, 2005, 43(9): 1943-1949.
[26] Fujisada H, Sakuma F, Ono A, et al. Design and preflight performance of ASTER instrument protoflight model[C]//IEEE Transactions on Geoscience and Remote Sensing, 1998, 36: 1152-1160.
[27] Christine M Lee, Morgan L Cablea, Simon J Hooka, et al. An introduction to the NASA hyperspectral infrared imager (HyspIRI) mission and preparatory activities[J]. Remote Sensing of Environment, 2015, 167: 6-19.
[28] Bruno Jau, Bjorn T Eng, Marc Foote, et al. Infrared instrument support for HyspIRI-TIR[C]//SPIE, 2012, 8511: 1-7.
[29] Abrams M J, Hook S J. NASA’s hyperspectral infrared imager (HyspIRI)[M]//Thermal Infrared Remote Sensing, Springer Netherlands, 2013:117-130.
[30] 赵艳华, 戴立群, 白绍竣, 等. 全谱段光谱成像仪集成设计技术先进性分析[C]//第四届高分辨率对地观测学术年会, 2017: 1-10.
ZHAO Yanhua, DAI Liqun, BAI Shaojun, et al. Analysis on the advancedness of integrated design technology of visual and infrared multispectral sensor[C]//The 4th China high resolution earth observation conference, 2017 : 1-10.
[31] 武佳丽, 余涛, 顾行发, 等. 中国资源卫星现状与应用趋势概述[J]. 遥感信息, 2008(6): 96-101.
WU Jiali, YU Tao, GU Xingfa, et al. Status and application trend of Chinese earth resources satellites[J]. Remote Sensing Information, 2008(6): 96-101.

相似文献/References:

[1]黄新栋.制冷型红外探测器高精度制冷控温系统[J].红外技术,2012,34(09):547.
 HUANG Xin-dong.High-precision Temperature Control System of Cooled Infrared Sensor[J].Infrared Technology,2012,34(2):547.
[2]殷丽梅,刘莹奇,李洪文.实现高精度红外探测的冷光学技术[J].红外技术,2013,35(09):535.[doi:10.11846/j.issn.1001_8891.201309002]
 YIN Li-mei,LIU Ying-qi,LI Hong-wen.Cold Optics Technology to Achieve High-accuracy Infrared Detection[J].Infrared Technology,2013,35(2):535.[doi:10.11846/j.issn.1001_8891.201309002]
[3]赵利俊,欧文,闫建华,等.一种与CMOS工艺兼容的热电堆红外探测器[J].红外技术,2012,34(02):089.
 ZHAO Li-Jun,OU Wen,YAN Jian-Hua,et al.Fabrication of a Thermopile Infrared Detector?That Compatible with CMOS Process[J].Infrared Technology,2012,34(2):089.
[4]徐参军,赵劲松,潘顺臣,等.长波红外偏振图像及其误偏振信息分析[J].红外技术,2012,34(02):103.
 XU Can-jun,ZHAO Jin-song,PAN Shun-chen,et al.Analysis of LWIR Polarization Images and?Corresponding False Polarization Information[J].Infrared Technology,2012,34(2):103.
[5]李东臻,杜永成,陈翾,等.地面目标垂直壁面瞬态温度场的实验研究[J].红外技术,2012,34(01):031.
 LI Dong-zhen,DU Yong-cheng,CHEN Xuan,et al.Experimental Research on Transient Temperature Field of Vertical Surface of?Ground Object[J].Infrared Technology,2012,34(2):031.
[6]于洋,金亚平,潘兆鑫,等.长波红外制冷型光学系统超宽温消热差设计[J].红外技术,2011,33(10):585.
 YU Yang,JIN Ya-ping,PAN Zhao-xin,et al.Athermal Design of Cooled LWIR Optical Systemwith Extensive Temperature Range[J].Infrared Technology,2011,33(2):585.
[7]冯晓星,吉洪湖,斯仁,等.战斗机3~5 ?m波段红外特征空间分布及低发射率材料隐身效果分析[J].红外技术,2011,33(07):389.
 FENG Xiao-xing,JI Hong-hu,SI Ren,et al.Numerical Study on Spatial Distribution of 3~5 ?m Infrared Signature and Stealth Effect of Low Emissivity Material for Fighter Aircraft[J].Infrared Technology,2011,33(2):389.
[8]孙爱平,龚杨云,朱尤攀,等.微光与红外图像融合手持观察镜光学系统设计[J].红外技术,2013,35(11):712.[doi:10.11846/j.issn.1001_8891.201311008]
 SUN Ai-ping,GONG Yang-yun,ZHU You-pan,et al.Optical System Design of Low-light-level and Infrared Image Fusion Hand-held Viewer[J].Infrared Technology,2013,35(2):712.[doi:10.11846/j.issn.1001_8891.201311008]
[9]骆媛,王岭雪,金伟其,等.微光(可见光)/红外彩色夜视技术处理算法及系统进展[J].红外技术,2010,32(6):337.
 LUO Yuan,WANG Ling-xue,JIN Wei-qi,et al.Developments of Image Processing Algorithms and Systemsfor LLL(Vis.)/IR Color Night Vision[J].Infrared Technology,2010,32(2):337.
[10]李素芳,查文珂,方建军,等.石墨烯烟幕红外激光消光性能研究[J].红外技术,2010,32(6):366.
 LI Su-Fang,ZHA Wen-Ke,FANG Jian-Jun,et al.Extinction Characteristic of graphene Smoke to Infrared and Laser Wave[J].Infrared Technology,2010,32(2):366.
[11]武国军,白廷柱,白茯宁.基于可见光图像的红外图像反演研究[J].红外技术,2011,33(10):574.
 WU Guo-jun,BAI Ting-zhu,BAI Fu-ning.Research on Infrared Images Simulation by Inversing the Sceneof the Visible Light Images[J].Infrared Technology,2011,33(2):574.
[12]范永杰,金伟其*,李力,等.基于FPGA的可见光/红外双通道实时视频融合系统[J].红外技术,2011,33(05):257.
 FAN Yong-jie,JIN Wei-qi,LI Li,et al.Real Time Fusion System for Visible and IR Video Based on FPGA[J].Infrared Technology,2011,33(2):257.
[13]胡乃平,耿同同,王馨民.基于双波段视频探测的智能水炮系统设计[J].红外技术,2017,39(10):884.[doi:10.11846/j.issn.1001_8891.201710003]
 HU Naiping,GENG Tongtong,WANG Xinmin.Design of Intelligent Water Cannon System Based on Dual-band Video Detection[J].Infrared Technology,2017,39(2):884.[doi:10.11846/j.issn.1001_8891.201710003]

备注/Memo

备注/Memo:
收稿日期:2018-06-28;修订日期:2018-08-13.
作者简介:戴立群(1983-),男,黑龙江绥化人,工程师,硕士。研究方向是空间红外光学遥感器电子学总体设计、红外焦平面探测器技术研究等。
E-mail:dailiqun508@sina.com。
更新日期/Last Update: 2019-02-21