[1]陈婧,孙玉娟,周万军.融合运动模型与联合置信度量的改进核相关跟踪算法[J].红外技术,2018,40(11):1106-1111.[doi:10.11846/j.issn.1001_8891.201811015]
 CHEN Jing,SUN Yujuan,ZHOU Wanjun.An Improved Kernelized Correlation Tracking Algorithm Based on a Joint Confidence Measurement and Motion Model[J].Infrared Technology,2018,40(11):1106-1111.[doi:10.11846/j.issn.1001_8891.201811015]
点击复制

融合运动模型与联合置信度量的改进核相关跟踪算法
分享到:

《红外技术》[ISSN:1001-8891/CN:CN 53-1053/TN]

卷:
40
期数:
2018年第11期
页码:
1106-1111
栏目:
出版日期:
2018-11-21

文章信息/Info

Title:
An Improved Kernelized Correlation Tracking Algorithm Based on a Joint Confidence Measurement and Motion Model
文章编号:
1001-8891(2018)11-1106-06
作者:
陈婧1孙玉娟1周万军2
1. 鲁东大学 信息与电气工程学院;2. 中国人民解放军海军航空大学 航空基础学院
Author(s):
CHEN Jing1SUN Yujuan1ZHOU Wanjun2
1. College of Information and Electrical Engineering, Ludong University;
2. Aeronautical Foundation College, Naval Aeronautics and Astronautics University

关键词:
目标跟踪卡尔曼滤波运动模型核相关跟踪置信度测量不确定性理论
Keywords:
object trackingKalman filtermotion modelKernelized correlation trackingconfidence measurementuncertainty theory
分类号:
TP391
DOI:
10.11846/j.issn.1001_8891.201811015
文献标志码:
A
摘要:
红外制导技术是武器制导领域研究的热点和主要方向。针对探测跟踪过程中核相关跟踪算法(Kernelized Correlation Filter,KCF)对快速运动和严重遮挡目标的跟踪精度下降问题,提出一种融合卡尔曼滤波和运动模型的改进核相关目标跟踪算法。该算法首先利用运动模型对目标的位置进行初始估计,提出一种自适应搜索区域选择的方法。针对测试样本的置信度响应图呈现多峰平坦的情况,本文提出了一种用于目标相似度量的组合置信度测量策略,采用相关峰的锐度和置信图的平滑度约束来进一步计算疑似区域的置信度,提升算法的抗干扰能力;同时,本文也提出了一种基于最优置信度的自适应参数更新,增强模型的泛化能力。大量的仿真实验结果表明本文所提的算法的跟踪性能超过传统的核相关跟踪算法,对复杂的跟踪场景具有更强的鲁棒性与抗干扰能力。
Abstract:
Infrared guidance technology is gaining popularity in the field of weapon guidance and has gradually become an important method for precision guidance. A novel improved kernelized correlation tracking algorithm based on Kalman filtering and motion models is proposed to improve tracking accuracy that can deteriorated by fast motion and severe occlusion. First, an adaptive search region location method is proposed, where the optimal position is estimated by the uncertainty theory of the motion model to define the optimal search window. Since the confidence map for the test samples show a multi-peak-flat, a confidence strategy for similarity measurement is also proposed. The confidence of the correlation peak can be calculated using the sharpness of the correlation peak and a smoothness constraint. Finally, the optimal confidence is introduced to obtained an adaptive update model. A large number of simulations show that our proposed algorithm exhibits more robust performance and anti-interference ability than the traditional KCF algorithm.

参考文献/References:

[1] 郑浩, 董明利, 潘志康. 基于背景加权的尺度方向自适应均值漂移算法[J]. 计算机工程与应用, 2016, 52(22): 192-197.?
ZHENG Hao, DONG Mingli, PAN Zhikang, et al. Scale-based adaptive mean shift algorithm based on background weighting[J]. Computer Engineering and Applications, 2016, 52(22): 192-197.?
[2] 徐少飞, 刘政怡, 桂斌. 基于循环核矩阵的自适应目标跟踪算法[J]. 计算机工程与应用, 2016, 52(20): 177-181.
XU Shaofei, LIU Zhengyi, GUI Bin. Adaptive object tracking algorithm based on cyclic kernel matrix[J]. Computer Engineering and Applications, 2016, 52(20): 177-181.
[3] ZHANG W, LU H, YANG M H. Robust object tracking via sparse collaborative appearance model[J]. IEEE Trans. Image Process., 2014, 23(5): 2356-2368.
[4] 马天义, 张会香, 宋敏敏, 等. 引入显著特征空间的抗遮挡红外目标跟踪[J]. 红外与激光工程, 2017, 46(3): 60-66.
MA Tianyi, ZHANG Huixiang, SONG Minmin, et al. Anti-blocking infrared target tracking with significant feature space[J]. Infrared and Laser Engineering, 2017, 46(3): 60-66.
[5] 张灿龙, 唐艳平, 李志欣, 等. 红外可见光目标的空间直方图表示与联合跟踪[J]. 中国图象图形学报, 2017, 22(4): 492-501.
ZHANG Canlong, TANG Yanping, LI Zhixin, et al. Spatial histogram representation and joint tracking of infrared visible light object[J]. Journal of Image and Graphics, 2017, 22(4): 492-501.
[6] 陈东成, 朱明, 高文, 等. 在线加权多示例学习实时目标跟踪[J]. 光学精密工程, 2014, 22(6): 1661-1667.
CHEN Dongcheng, ZHU Ming, GAO Wen, et al. Online real-time object tracking with weighted multi-instance learning[J]. Optics and Precision Engineering, 2014, 22(6): 1661-1667.
[7] 刘亚伟, 李小民, 陈为元. 基于改进CamShift融合Kalman滤波的无人机目标跟踪研究[J]. 电光与控制, 2017(8): 33-37.
LIU Yawei, LI Xiaomin, CHEN Weiyuan. Research on UAV Object Tracking Based on Improved CamShift Fusion Kalman Filter[J]. Electrooptics and Control, 2017(8): 33-37.
[8] 谢涛, 吴恩斯. 一种鲁棒的基于集成学习的核相关红外目标跟踪算法[J]. 电子与信息学报, 2018, 40(3): 602-609.
XIE Tao, WU Ensi. A Robust Kernelized correlation Infrared object Tracking Algorithm Based on Integrated Learning[J]. Journal of Electronics and Information Technology, 2018, 40(3): 602-609.
[9] Henriques J F, Caseiro R, Martins P, et al. High-Speed Tracking with Kernelized Correlation Filters[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2014, 37(3): 583-596.
[10] TING Liu, WANG Gang, YANG Qingxiong. Real-time part-based visual tracking via adaptive correlation filters[J]. IEEE Conference on Computer Vision and Pattern Recognition, 2015: 4902-4912.
[11] Arulampalam M S, Maskell S, Gordon N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J]. IEEE Transactions on signal processing, 2002, 50(2): 174-188.
[12] ZHANG K H, ZHANG L, LIU Q S, et al. Fast visual tracking via dense spatio-temporal context learning[C]//European Conference on Computer Vision , 2014: 127-141.
[13] 朱航江, 朱帆, 潘振福, 等. 运动状态与尺度估计的核相关目标跟踪方法[J]. 计算机科学, 2017, 44(S2): 193-198.
ZHU Hangjiang, ZHU Fan, PAN Zhenfu. Object Tracking Method for Motion State and Scale Estimation[J]. Computer Science, 2017, 44(S2): 193-198.
[14]? Kwon J, Lee K M. Tracking by Sampling and IntegratingMultiple Trackers[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2014, 36(7): 1428-1441.
[15]? ZHANG B, LI Z, Perina A, et al. Adaptive local movement modeling for robust object tracking[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2017, 27(7): 1515-1526.

相似文献/References:

[1]彭青艳,赵勋杰,陈家波. 跟踪窗口尺寸自适应调整的粒子滤波跟踪算法[J].红外技术,2012,34(10):568.
 PENG Qing-yan,ZHAO Xun-jie,CHEN Jia-bo. Adaptive Window Object Tracking for Particle Filter[J].Infrared Technology,2012,34(11):568.
[2]杨悦,刘兴淼,郭启旺,等.基于改进互信息的红外目标匹配跟踪算法[J].红外技术,2013,35(06):350.
 YANG Yue,LIU Xing-miao,GUO Qi-wang,et al.Infrared Object Matching Tracking Algorithm Based on Improved Mutual Information[J].Infrared Technology,2013,35(11):350.
[3]赵忠义,邓天华,唐召胜.基于运动学的机载红外被动测距算法研究[J].红外技术,2012,34(08):482.
 ZHAO Zhong-yi,DENG Tian-hua,TANG Zhao-sheng.Research on Kinematic Model Based Passive Ranging Algorithm for Infrared Searching and Tracking Systems[J].Infrared Technology,2012,34(11):482.
[4]唐耀飞,李杰.基于模板相关匹配的红外目标跟踪FPGA算法实现[J].红外技术,2012,34(03):173.
 TANG Yao-fei,LI Jie.The Implementation of FPGA Based?on Template-matching Infrared Target Tracking Algorithm[J].Infrared Technology,2012,34(11):173.
[5]祝善友,巩彩兰,胡 勇,等.矩匹配与卡尔曼滤波在红外图像非均匀性校正应用中的比较研究[J].红外技术,2013,35(11):691.[doi:10.11846/j.issn.1001_8891.201311004]
 ZHU Shan-you,GONG Cai-lan,HU Yong,et al.Comparison Between Applications of the Moment Matching and the Kalman Filter Methods in Infrared Non-uniformity Correction[J].Infrared Technology,2013,35(11):691.[doi:10.11846/j.issn.1001_8891.201311004]
[6]陈义,孙小炜,李言俊.基于人眼视觉非均匀特性的实时粒子滤波跟踪方法[J].红外技术,2010,32(11):621.
 CHEN Yi,SUN Xiao-wei,LI Yan-jun.Real-time Particle Filter Tracking Method Based on Human VisionNon-uniform Characteristics[J].Infrared Technology,2010,32(11):621.
[7]张建伟,唐 黎.扩展目标跟踪中的自适应模板刷新算法研究[J].红外技术,2014,36(4):315.[doi:10.11846/j.issn.1001_8891.201404012]
 ZHANG Jian-wei,TANG Li.Adaptive Template Update Algorithm Research for Extended Object Tracking[J].Infrared Technology,2014,36(11):315.[doi:10.11846/j.issn.1001_8891.201404012]
[8]司迎利,杨新宇,陈勇,等.基于全局状态估计的多传感器加权数据融合算法[J].红外技术,2014,36(5):360.[doi:10.11846/j.issn.1001_8891.201405004]
 SI Ying-li,YANG Xin-yu,CHEN Yong,et al.Multi-sensor Weighted Data Fusion Algorithm Based on Global State Estimation[J].Infrared Technology,2014,36(11):360.[doi:10.11846/j.issn.1001_8891.201405004]
[9]毛丽民,卢振利,浦宇欢,等.基于FPGA实现粒子滤波算法的实时细胞跟踪系统设计[J].红外技术,2014,36(5):389.[doi:10.11846/j.issn.1001_8891.201405010]
 MAO Li-min,LU Zhen-li,PU Yu-huan,et al.Design of a Real-time Cell Tracking System by Implementation of Particle Filter Algorithm with FPGA[J].Infrared Technology,2014,36(11):389.[doi:10.11846/j.issn.1001_8891.201405010]
[10]管学伟,刘先志,罗镇宝.基于区域协方差矩阵的目标跟踪方法[J].红外技术,2009,31(2):099.
 GUAN Xue-wei,LIU Xian-zhi,LUO Zhen-bao.Object Tracking Algorithm Based on Region Covariance Matrix[J].Infrared Technology,2009,31(11):099.
[11]王明阳,裴浩东.基于TMS320F2812的多传感器目标跟踪的控制系统设计[J].红外技术,2011,33(12):687.
 WANG Ming-yang,PEI Hao-dong.Design of the Control and Fusion System of Target Tracking withMultiple Distributed Sensors Based on TMS320F2812[J].Infrared Technology,2011,33(11):687.
[12]田广强.一种新颖高效的红外动态场景多目标检测跟踪[J].红外技术,2018,40(3):259.[doi:10.11846/j.issn.1001_8891.201803010]
 TIAN Guangqiang.A Novel Algorithm for Efficient Multi-object Detection and Tracking for Infrared Dynamic Frames[J].Infrared Technology,2018,40(11):259.[doi:10.11846/j.issn.1001_8891.201803010]

备注/Memo

备注/Memo:
收稿日期:2018-06-03;修订日期:2018-10-24.
作者简介:陈婧(1982-),女,汉族,山东龙口人,博士,讲师,研究方向为计算机图形图像处理,模式识别等。E-mail:chjiloko@126.com。
基金项目:鲁东大学博士科研启动基金项目(LY2013002)。

更新日期/Last Update: 2018-11-20