[1]范青帅,范宏波,林 宇,等.基于长线列扫描周视红外成像的多目标提取方法综述[J].红外技术,2019,41(2):118-126.[doi:10.11846/j.issn.1001_8891.201902003]
 FAN Qingshuai,FAN Hongbo,LIN Yu,et al.Multi-object Extraction Methods Based on Long-line Column Scanning for Infrared Panorama Imaging[J].Infrared Technology,2019,41(2):118-126.[doi:10.11846/j.issn.1001_8891.201902003]
点击复制

基于长线列扫描周视红外成像的多目标提取方法综述
分享到:

《红外技术》[ISSN:1001-8891/CN:CN 53-1053/TN]

卷:
41卷
期数:
2019年第2期
页码:
118-126
栏目:
出版日期:
2019-02-22

文章信息/Info

Title:
Multi-object Extraction Methods Based on Long-line Column Scanning for Infrared Panorama Imaging
文章编号:
1001-8891(2019)02-0118-09
作者:
范青帅范宏波林 宇张 晋林丹丹杨 超朱 亮李 伟
昆明物理研究所,云南 昆明 650223
Author(s):
FAN QingshuaiFAN HongboLIN YuZHANG JinLIN DandanYANG ChaoZHU LiangLI Wei
(Kunming Institute of Physics, Kunming 650223, China)
关键词:
长线列扫描图像分割多红外弱小目标提取
Keywords:
long line scanimage segmentationmulti-IR small target extraction
分类号:
TP391.4
DOI:
10.11846/j.issn.1001_8891.201902003
文献标志码:
A
摘要:
介绍了长线列扫描周视红外图像的多目标提取的研究背景和图像数据量大、背景复杂度高给目标提取带来的问题,分析了与传统焦平面阵列输出红外图像的不同。根据长线列扫描周视红外图像的特点,从长线列扫描周视红外图像的快速处理方法和多目标提取方法两个方面进行了归纳总结,分析了不同处理方法中面临的问题和解决思路。最后总结长线列扫描周视红外图像的多目标提取技术的发展方向和趋势。
Abstract:
This paper introduces the research background of the multi-object extraction of long-line scanning of peripheral infrared images and the problems of large image data and high background complexity in target extraction. The difference between the infrared image output and the traditional FPA output is analyzed. According to the characteristics of the long-line scanning peripheral infrared image, the fast-processing method and multi-object extraction method for scanning the peripheral infrared image from the long-line column are summarized. Furthermore, the problems and solutions for various processing methods are also analyzed. Finally, the development direction and trend of multi-target extraction technology for long-line scanning of infrared images are summarized.

参考文献/References:

[1] WEICKERT J. Anisotropic Diffusion in Image Processing[M]. Copenhagen, Denmark: Department of Computer Science, University of Copenhagen, 1999.
[2] JOHN C R. Image Processing[M]. 6th ed., Boca Raton: CRC press, 2016: 1-885.
[3] SONKA M, HLAVAC V, BOYLE R. Image Processing, Analysis, and Machine Vision[M]. 4th ed., Cengage Learning, 2014: 1-920.
[4] MICHAEL VOLLMER K M. Infrared Thermal Imaging: Fundamentals, Research and Applications[M]. 2nd ed., John Wiley & Sons, 2017: 1-612.
[5] 孙刚, 郭仕剑, 陈曾平. 周视红外成像搜索系统中的实时目标检测方法[J]. 红外与激光工程, 2014, 43(7): 2152-2158.
SUN Gang, GUO Shijian, CHEN Zengping. Real-time target detection algorithm of infrared imaging alarm system in panoramic field-of-view[J]. Infrared and Laser Engineering, 2014, 43(7): 2152-2158.
[6] DE M V, PIET B W, JOHANNES F, et al. Passive ranging using an infrared search and track sensor[J]. Optical Engineering, 2006, 45(2): 1-14.
[7] Venkataraman Kartik, Jabbi Amandeep S, Mullis Robert H. Systems and methods for normalizing image data captured by camera arrays: US9049381[P/OL]. 2014-11-25. http:// www. freepatentsonline. com/ 8896719.html.
[8] WANG J P, SUN H Y, HAN Y. A method of small target detection based on energy accumulation and morpholog in infrared image sequence[C]//International Conference on Computer, Mechatronics, Control and Electronic Engineering, 2010: 155-163.
[9] MICHAEL A K. State-of-the-art Infrared Detector Technology[M]. United States: Spie, 2014: 1-280.
[10] 范宏波. 基于1152×6长波线列探测器的高性能红外搜索预警系统[J]. 红外技术, 2010, 32(1): 20-24.
FAN Hongbo. A high performance IRST system based on 1152×6 LWIR Detectors[J]. Infrared Technology, 2010, 32(1): 20-24.
[11] LE Z, ZHI Yonga, YONGP H, et al. Infrared weak-feature target tracking using the spatial-temporal orientation energy feature[J]. ACTA Photonica Sinica, 2017, 46(8): 1-8.
[12] HAN Jinhui, MA Yong, ZHOU Bo. A robust infrared small target detection algorithm based on human visual system[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(12): 2168-2172.
[13] FAN Junliang, GAO Yongming, WU Zhihuan. Infrared dim small target detection technology based on RPCA[C]//ICEITI, 2017: 748-757.
[14] DENG Lizhen, HU Zhu, CHAO Tao, et al. Infrared moving point target detection based on spatial-temporal local contrast filter[J]. Infrared Physics & Technology, 2016, 76(1): 168-173.
[15] DAI Yimian, WU Yiquan, YU Song. Infrared small target and background separation via column-wise weighted robust principal component analysis[J]. Infrared Physics & Technology, 2016, 77(1): 421-430.
[16] 杨杰, 张翔. 视频目标检测和跟踪及其应用[M]. 上海: 上海交通大学出版社, 2012.
YANG Jie, ZHANG Xiang. Video Target Detection and Tracking and Application[M]. Shanghai: Shanghai Jiaotong University Press, 2012.
[17] YANG Q. A hybrid filter for enhancing dim small point target and its fast implemention[C]//IEEE International Conference on Multimedia and Signal Processing, 2011: 13-19.
[18] 李一芒, 何昕, 魏仲慧. 红外预警实时图像处理系统设计与实现[J]. 液晶与显示, 2013(1): 110-114.
LI Yimang, HE Xin, WEI Zonghui. Design and implement of real-time image processing system for IR warning system based on multi- passage[J]. Chinese Journal of Liquid Crystals and Displays, 2013(1): 110-114.
[19] 郭志军. 周扫式光电预警实时图像处理系统的研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2011.
GUO Zhijun. Research on Scanning-photoelectric Warning System Based on Real-time Image Processing[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2011.
[20] 杨磊, 杨杰, 凌建国. 红外大视场环境下的多小目标实时检测方法: 中国, CN200510028883.8[P]. 2005.
YANG Lei, YANG Jie, LING Jianguo. Real-time detection method for multiple small targets in infrared large field of view: China, CN200510028883.8[P]. 2005.
[21] 朱振平. 周视红外搜索系统目标检测技术研究[D]. 长沙: 国防科技大学, 2011.
ZHU Zhenping. Research on Target Detection of Panoramic Infrared Search System[D]. Changsha: National University of Defense Technology, 2011.
[22] 孙刚. 大视场红外搜索系统目标检测关键技术研究[D]. 长沙: 国防科技大学, 2015.
SUN Gang. Research on Key Technology of Infrared Target Detection in Large Field of View System[D]. Changsha: National University of Defense Technology, 2015.
[23] 刘让, 王德江, 贾平, 等. 红外图像弱小目标探测技术综述[J]. 激光与光电子学进展, 2016, 53: 050004.
LIU Rang, WANG Dejiang, JIA Ping, et al. Review of infrared image weak target detection technology[J]. Advances in Laser & Optoelectronics, 2016, 53: 050004.
[24] HIMANI S P, DARSHAK G T, UDESANG K J. A survey on object detection and tracking methods[J]. Ijircce, 2014(2): 2970-2978.
[25] WAN Minjie, GU Guohua, CAO Ercong, et al. In-frame and inter-frame information based infrared moving small target detection under complex cloud backgrounds[J]. Infrared Physics & Technology, 2016, 76(1): 455-467.
[26] 吕凭乐, 赵丹新, 孙胜利. 天基微弱运动点目标检测研究综述[J]. 红外, 2017, 38(1): 1-7.
LV Pingle, ZHAO Danxin, SUN Shengli. Overview of space weak motion points target detection [J]. Infrared, 2017, 38(1): 1-7.
[27] HE Weiji, FENG Weiyi, PENG Yiyue, et al. Multi-level image fusion and enhancement for target detection[J]. Optik-International Journal for Light and Electron Optics, 2015, 126(11/12): 1203-1208.
[28] 田毅龙. 红外低空大视场图像弱小目标检测技术研究[D]. 长沙: 国防科学技术大学, 2012.
TIAN Yilong . Research on the Detection Technology of Dim and Small Target for Infrared Image with Large Field of View under Low Sky[D]. Hunan: National University of Defense Technology, 2012.
[29] CHENG Jing, WANG Yuanhang. A motion image detection method based on the inter-frame difference method[J]. Mechanical Design and Power Engineering, 2014, 490(1): 1283-1286.
[30] 屈晶晶, 辛云宏. 连续帧间差分与背景差分相融合的运动目标检测方法[J]. 光子学报, 2014, 43(7): 1-8.
QU Jingjing, XIN Yunhong. Combined continuous frame difference and background difference method for moving target detection[J]. Acta Photonica Sinica, 2014, 43(7): 1-8.
[31] 高美凤, 刘娣. 分块帧差和背景差相融合的运动目标检测[J]. 计算机应用研究, 2013, 30(1): 299-302.
GSO Meifeng, LIU Wei. Moving target detection based on block frame difference and background difference[J]. Journal of Computer Applications, 2013, 30(1): 299-302.
[32] THIERRY B. Traditional and recent approaches in background modeling for foreground detection: an overview[J]. Computer Science Review, 2014, 11(1): 31-66.
[33] 王继平, 孙华燕, 章喜. 基于Kalman滤波的红外弱小目标检测前跟踪算法[J]. 装备学院学报, 2012, 23(2): 72- 77.
WANG Jiping, SUN Huayan, ZHANG Xi. Kalman filter based tracking algorithm for infrared weak small target detection[J]. Journal of the College of Equipment, 2012, 23(2): 72- 77.
[34] 陈俊超, 张俊豪, 刘诗佳, 等. 基于背景建模与帧间差分的目标检测改进算法[J]. 计算机工程, 2011, 37(1): 171- 173.
CHEN Junchao, ZHANG Junhao, LIU Shijia, et al. Improved target detection algorithm based on background modeling and interframe difference[J]. Computer Engineering, 2011, 37(1): 171- 173.
[35] 王辉, 宋建新. 一种基于阈值的自适应Vibe目标检测算法[J]. 计算机科学, 2015, 42(6A): 154- 157.
WANG Hui, SONG Jianxin. A threshold-based adaptive vibe target detection algorithm[J]. Computer Science, 2015, 42(6A): 154- 157.
[36] GAO Chenqiang, LAN Wang, XIAO Yongxing, et al. Infrared small -dim target detection based on Markov random field guided noise modeling[J]. Pattern Recognition, 2018, 76(1): 463 - 475.
[37] 袁国武, 陈志强, 龚建, 等. 一种结合光流法与三帧差分法的运动目标检测算法[J]. 小型微型计算机系统, 2013, 34(1): 1-4.
YUAN Guowu, CHEN Zhiqiang, GONG Jian, et al. A moving target detection algorithm based on optical flow method and three-frame difference method[J]. Journal of Chinese Computer Systems, 2013, 34(1): 1-4.
[38] RYAN K, CAMILLO J T. Optical flow with geometric occlusion estimation and fusion of multiple frames[C]//International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition, 2015: 364-377.
[39] REVAUD J, PHILIPPE W, ZAID H, et al. Epicflow: edge-preserving interpolation of correspondences for optical flow[C]// IEEE Conference on Computer Vision and Pattern Recognition, 2015, DOI: 10.1109/ CVPR.2015.7298720.
[40] 侯旺, 于起峰. 基于分块速度域改进迭代运动目标检测算法的红外弱小目标检测[J]. 物理学报, 2014, 63(7): 1-13.
HOU Wang, YU Qifeng. Infrared dim target detection based on improved iterative moving target detection algorithm based on block velocity domain[J]. Acta Phys. Sinica, 2014, 63(7): 1-13.
[41] CHEN Shangfeng, XIAO Shanzhu, LU Huanzhang. Dim small targets detection based on energy accumulation in image series[J]. Systems Engineering and Electronics, 2009, 31(2): 288-291.
[42] RAFFEL M, CHRISTIAN E W, SCARANO F, et al. Particle Image Velocimetry: A Practical Guide, 255[M]. Berlin: Springer-Verlag, 1998.
[43] 郭姗姗. 基于改进粒子滤波的红外弱小目标检测前跟踪算法[D]. 哈尔滨: 哈尔滨工程大学, 2012.
GUO Shanshan. Tracking algorithm for infrared weak target detection based on improved particle filter[D]. Harbin: Harbin Engineering University, 2012.
[44] 杨洋. 基于粒子滤波的红外弱小目标检测前跟踪算法的DSP实现[D]. 哈尔滨: 哈尔滨工程大学, 2012.
YANG Yang. DSP Implementation of Tracking Algorithm for Infrared Weak Small Target Detection Based on Particle Filter[D]. Harbin: Harbin Engineering University, 2012.
[45] HU Yongli, LU Xinxin, HU Jing. A new method of small target detection based on neural network[C]//Automatic Target Recognition and Navigation, 2018: DOI: 10.1117/12.2285178.
[46] 陈炳文, 王文伟, 秦前清. 基于Fuzzy-ART神经网络的红外弱小目标检测[J]. 系统工程与电子技术, 2012(5): 857- 863.
CHEN Bingwen, WANG Wenwei, QIN Qianqing. Infrared dim target detection based on Fuzzy-ART neural network[J]. Systems Engineering and Electronics, 2012(5): 857- 863.
[47] 李凡, 耿旭. 基于人工蚁群的红外弱小目标检测方法[J]. 航天电子对抗, 2013(6): 8-10.
LI Fan, GENG Xu. Infrared dim target detection method based on artificial ant colony[J]. Aerospace Electronic Front, 2013(6): 8-10.
[48] KARABOGA D, AKAY B. A survey on the applications of artificial bee colony in signal, image, and video processing[J]. Signal, Image and Video Processing, 2015, 9(4): 967-990.
[49] JING Hu, HU Yongli, LU Xinxin. A new method of small target detection based on neural network[C]//Automatic Target Recognition and Navigation, 2018: DOI:10.1117/12.2285178.
[50] ZHAO Jufeng, CHEN Yueting, FENG Huajun, et al. Infrared image enhancement through saliency feature analysis based on multi-scale decomposition[J]. Infrared Physics & Technology, 2014, 62: 86-93.
[51] SHI Yafei, WEI Yantao, HUANG Yao, et al. High-boost-based multiscale local contrast measure for infrared small target detection[J]. IEEE, 2018, 15(1): 33-37.
[52] ZHANG K H, ZHANG L, LIU Q S, et al. Fast visual tracking via dense spatio-temporal context learning[C]//European Conference on Computer Vision, 2014, 8693: 127-141.
[53] QIAN J, ZHOU H. Infrared dim moving target tracking via improved context learning[C]//SPIE, 2017: DOI: 10.1117/12.2268553.
[54] NASRABADI N M. Hyperspectral target detection : an overview of current and future challenges[J]. IEEE Signal Processing Magazine, 2014, 31(1): 34-44.
[55] WANG X, PENG Z, KONG D, et al. Infrared dim target detection based on total variation regularization and principal component pursuit[J]. Image and Vision Computing, 2017, 63: 1-9.
[56] ZHANG Y, DU B, ZHANG L. A sparse representation-based binary hypothesis model for target detection in hyperspectral images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(3): 1346-1354.
[57] DEPENG L, ZHENGZHOU L, BING L. Infrared small target detection in heavy sky scene clutter based on sparse representation[J]. Infrared Physics & Technology, 2017, 85(1): 13-31.
[58] 覃仕宇. 红外图像显著性检测方法研究[D]. 重庆: 重庆邮电大学, 2017.
YAN Shiyu. Research on Infrared Image Saliency Detection Method [D]. Chongqing: Chongqing University of Posts and Telecommunications, 2017.
[59] WANG Xiaoyang, PENG Zhenming, ZHANG Ping . Boolean map saliency combined with motion feature used for dim and small target detection in infrared video sequences[C]//Proc. of SPIE on Infrared Technology and Applications, and Robot Sensing and Advanced Control, 2016, 10157: 1015712.

相似文献/References:

[1]李晓冰. 基于自适应模糊加权指数的FCM聚类测量图像分割方法[J].红外技术,2013,35(03):146.
 LI Xiao-bing. A FCM Segmentation Method of Measurement of Image Based on Adaptive Coefficient of Fuzzy Weight[J].Infrared Technology,2013,35(2):146.
[2]吴滢跃,汤心溢,刘士建,等. 一种基于图像分割的海天线提取算法[J].红外技术,2012,34(10):584.
 WU Ying-yue,TANG Xin-yi,LIU Shi-jian,et al. A Method for Sea-sky-line Detection Based on Image Division[J].Infrared Technology,2012,34(2):584.
[3]王世亮,杨帆,张志伟,等.基于目标红外特征与SIFT特征相结合的目标识别算法[J].红外技术,2012,34(09):503.
 WANG Shi-liang,YANG Fan,ZHANG Zhi-wei,et al.A Target Recognition Method Based on Infrared Features and SIFT[J].Infrared Technology,2012,34(2):503.
[4]李旭,赵文杰,杨凯达.基于小目标预提取的OTSU分割方法[J].红外技术,2013,35(08):492.[doi:10.11846/j.issn.1001_8891.201308008]
 LI Xu,ZHAO Wen-jie,YANG Kai-da.OTSU Applied in Image Segmentation Based on Small Targets Pre-detection[J].Infrared Technology,2013,35(2):492.[doi:10.11846/j.issn.1001_8891.201308008]
[5]魏新,马丽华,李云霞,等.基于图像分割和平台直方图均衡的红外图像增强算法[J].红外技术,2012,34(05):272.
 WEI Xin,MA Li-hua,LI Yun-xia,et al.Infrared Image Enhancement Algorithm Basedon Image Segmentation and Platform Histogram Equalization[J].Infrared Technology,2012,34(2):272.
[6]刘恩凡,杨久成,石文君,等.一种基于改进Chan-Vese模型的图像分割方法[J].红外技术,2011,33(09):545.
 LIU En-fan,YANG Jiu-cheng,SHI Wen-jun,et al.An Infrared Image Segmentation Approach based on Improved Chan-Vese Model[J].Infrared Technology,2011,33(2):545.
[7]李唐兵,龚 磊,姚建刚.基于红外热像和权值直接确定神经网络的零值绝缘子识别方法[J].红外技术,2013,35(11):707.[doi:10.11846/j.issn.1001_8891.201311007]
 LI Tang-bing,GONG Lei,YAO Jian-gang.On-site Identification of Zero Resistance Insulator Based on Infrared Thermal Image and One-step Weights-determination of Neural Network[J].Infrared Technology,2013,35(2):707.[doi:10.11846/j.issn.1001_8891.201311007]
[8]李彬彬,王敬东,李鹏.基于图像分割的置信传播立体匹配算法研究[J].红外技术,2011,33(03):167.
 LI Bin-bin,WANG Jing-dong,LI Peng.Research of Stereo Matching Using Belief PropagationBased on Image Segmentation[J].Infrared Technology,2011,33(2):167.
[9]李露.SGNN优化算法的研究及其在图像分割中的应用[J].红外技术,2010,32(4):198.
 LI Lu.Optimized Self-Generating Neural Network for Image Segmentation[J].Infrared Technology,2010,32(2):198.
[10]张品,陈亦望,戴蒙.一种新的红外假目标示假效果评价方法[J].红外技术,2010,32(3):152.
 ZHANG Pin,CHEN Yi-wang,DAI Meng.A New Method for Effect Evaluating of Infrared Decoys[J].Infrared Technology,2010,32(2):152.

备注/Memo

备注/Memo:
收稿日期:2018-05-30;修订日期:2018-08-29.
作者简介:范青帅(1992-),男,硕士研究生,研究方向:红外搜索与跟踪。E-mail:1317704653@qq.com。
更新日期/Last Update: 2019-02-21