[1]冯宏伟,刘媛媛,谢林柏.双波段红外可燃气体探测器的算法设计与实现[J].红外技术,2019,41(3):227-231.[doi:10.11846/j.issn.1001_8891.201903005]
 FENG Hongwei,LIU Yuanyuan,XIE Linbo.Algorithm Design and Implementation for Dual-band Infrared Combustible Gas Detector[J].Infrared Technology,2019,41(3):227-231.[doi:10.11846/j.issn.1001_8891.201903005]
点击复制

双波段红外可燃气体探测器的算法设计与实现
分享到:

《红外技术》[ISSN:1001-8891/CN:CN 53-1053/TN]

卷:
41卷
期数:
2019年第3期
页码:
227-231
栏目:
出版日期:
2019-03-20

文章信息/Info

Title:
Algorithm Design and Implementation for Dual-band Infrared Combustible Gas Detector

文章编号:
TN215
作者:
冯宏伟1刘媛媛23谢林柏3
1. 无锡职业技术学院;
2. 无锡科技职业学院;
3. 江南大学物联网工程学院

Author(s):
FENG Hongwei1LIU Yuanyuan23XIE Linbo3
1. Wuxi Institute of Technology;
?2.Wuxi Professional College of Science and Technology;
3. College of Internet of Things Engineering, Jiangnan University

关键词:
双波段红外可燃气体探测器算法设计
Keywords:
dual-band infraredcombustible gasthe detectorrecognition algorithm
分类号:
TN215
DOI:
10.11846/j.issn.1001_8891.201903005
文献标志码:
A
摘要:
本文基于可燃气体吸收特定波段的红外光原理,设计了一款红外双波段可燃气体探测器。通过分析碳氢类可燃气体分子吸收特性,确定了可燃气体的吸收波长与参考波长,并完成了探测器的光路部分和整体硬件电路设计。通过在高低温实验平台内某一恒定温度下,配制8组不同浓度的气体进行标定,并记录下标定的数据,生成了探测器的检测浓度计算曲线。同时,通过对待测气体浓度为0状态下的多组不同环境温度测试,得出探测器受环境温度影响的特性,引入吸收参数H,并建立吸收参数H与温度的补偿表,实现了对因温度变化所引起的检测偏差的合理补偿。实验结果表明,该探测器的精度较好、响应快,高低温性能稳定,完全符合国家标准和设计要求。
Abstract:
Based on the principle of combustible gas absorbing infrared light at specific bands, an infrared dual-band combustible gas detector was designed in this study. By analyzing the molecular absorption characteristics of hydrocarbon combustible gas, the absorption band and reference band of the combustible gas were determined, and the optical path and hardware circuit of the detector were designed. With the high and low temperature experimental platforms at a constant temperature, 8 groups of gases with different concentrations were prepared for calibration, and the calibrated data were recorded to generate the detection concentration calculation curve of the detector. Meanwhile, the characteristics of the detector affected by the ambient temperature were determined through the multi-group test under the condition that the measured gas concentration was 0 under different ambient temperatures. The absorption parameter H was introduced, and the compensation table of the absorption parameter H and temperature was established to achieve reasonable compensation for the detection deviation caused by temperature change. The experimental results showed that the detector has good precision, fast response, and stable performance at high and low temperatures and completely meets the national standards and design requirements.

参考文献/References:

[1]? 李黎, 王一丁, 李树维. 红外气体检测技术在天然气安全生产中的应用[J]. 天然气工业, 2011, 31(1): 96-99.
LI Li, WANG Yiding, LI Shuwei, et al. Application of infrared gas detection technology in gas production safety[J]. Natural Gas Industry, 2011, 31(1): 96-99.
[2]? 陈迎春. 基于物联网和NDIR的可燃气体探测技术研究[D]. 合肥:中国科学技术大学, 2014.?
CHEN Yingchun. Study of combustible gas detection technology based on Internet of things and NDIR[D]. Hefei: University of Science and Technology of China, 2014.
[3]? 豆正伟, 李晓霞, 樊祥. 抗红外/毫米波复合制导的无源干扰技术发展现状[J]. 红外技术, 2009, 31(3): 125-128.
DOU Zhengwei, LI Xiaoxia, FAN Xiang. Research and Development of Passive Interfering to IR/MMW Compound Guidance[J]. Infrared Technology, 2009, 31(3): 125-128.
[4]? 李瑞. 可燃气体探测器检验装置的设计[D]. 沈阳: 东北大学, 2008.
LI Rui. Design of Testing Device for Combustible Gas Detector[D]. Shenyang: Norttheastern University, 2008.
[5]? 刘岗. 矿用红外瓦斯传感器设计[D]. 太原: 中北大学, 2013.
LIU Gang. Design of mine-used flameproof infrared gas sensor[D]. Taiyuan: North University of China, 2013.
[6]? 潘君骅. 大口径红外光学系统的成像设计[J]. 光学学报, 2003, 23(12): 1475-1478.
PAN Junhua. The Methodic Design of the IR Imaging System with Large Aperture[J]. Acta Optica Sinica, 2003, 23(12): 1475-1478.
[7]? Richard T Meyer. Gas Cell Selection for Analysis of Electronic Gases[J]. Gases and Technology, 2003, 4: 14-20.
[8]? 余勇超. 非分光红外气体传感器的光学系统和控制软件设计[D]. 武汉: 华中科技大学, 2011.
YU Yongchao. Design of Nondispersive Infrared Gas Sensor’s Optical and Software System[D]. Wuhan: Huazhong University of Science & Technology, 2011.
[9]? 陈友安. 基于红外光谱吸收的甲烷气体在线监测系统设计[D]. 合肥: 中国科学技术大学, 2016.
CHEN Youan. Design of Online Monitoring System for Methane gas based on Infrared Spectrum Absorption[D]. Hefei: University of Science and Technology of China, 2016.
[10]? 黎湘贵. 基于MSP430单片机的红外甲烷检测仪设计及实现[D]. 太原: 太原理工大学, 2015.
LI Xianggui. The Design and Realization of Infrared Methane Detector Based on MSP430 MCU[D]. Taiyuan: Taiyuan University of Technology, 2015.

备注/Memo

备注/Memo:
收稿日期:2018-05-11;修订日期:2018-10-28.
作者简介:冯宏伟(1982-),男,山东郓城人,硕士,高级工程师,研究方向智能仪器仪表的研发与设计。E-mail:f_smith@163.com。
基金项目:国家自然科学基金项目(61374047)。

更新日期/Last Update: 2019-03-19