[1]丁荣莉,韩传钊,谢宝蓉,等.红外遥感图像舰船目标检测[J].红外技术,2019,41(2):127-133.[doi:10.11846/j.issn.1001_8891.201902004]
 DING Rongli,HAN Chuanzhao,XIE Baorong,et al.Ship Target Detection in Infrared Remote-Sensing Image[J].Infrared Technology,2019,41(2):127-133.[doi:10.11846/j.issn.1001_8891.201902004]
点击复制

红外遥感图像舰船目标检测
分享到:

《红外技术》[ISSN:1001-8891/CN:CN 53-1053/TN]

卷:
41卷
期数:
2019年第2期
页码:
127-133
栏目:
出版日期:
2019-02-22

文章信息/Info

Title:
Ship Target Detection in Infrared Remote-Sensing Image
文章编号:
1001-8891(2019)02-0127-07
作者:
丁荣莉1韩传钊2谢宝蓉1王 琰1张 震1
1. 上海航天技术研究院,上海 201109;2. 中国人民解放军61646部队,北京 100192
Author(s):
DING Rongli1HAN Chuanzhao2XIE Baorong1WANG Yan1ZHANG Zhen1
1. Shanghai Academy of Spaceflight Technology, Shanghai 201109, China; 2. The Unit 61646 of PLA, Beijing 100192, China
关键词:
红外遥感图像海陆分割舰船检测视觉显著性
Keywords:
infrared remote sensing imagethe sea-land segmentationship detection
分类号:
TN7,TP722.5
DOI:
10.11846/j.issn.1001_8891.201902004
文献标志码:
A
摘要:
红外遥感图像舰船目标检测在军舰探测、精确制导等军用领域以及海面搜救、渔船监测等民用领域具有极其重要的战略意义。本文回顾了红外遥感图像的发展历程,总结了舰船遥感图像的特点及其图像处理的难点。着重分析了海陆分割和海洋背景图像预处理的研究现状,对舰船检测算法进行了总结和归纳,在此基础上对各种算法进行比较并指出其适用性和优缺点,最后对其未来发展趋势进行了展望。
Abstract:
The detection of ship targets in infrared remote-sensing images is of great strategic significance in military fields(warship detection and precision guidance) as well as in marine search and rescue, fishing vessel monitoring and other civilian fields. In this work, the development history of infrared remote-sensing images is reviewed, and the characteristics of ship remote-sensing images and the difficulties of image processing are summarized. The focus of this work is analyzing the research status of sea-land segmentation and ocean background image preprocessing, summarizing the algorithm of ship detection, comparing various algorithms, and pointing out their applicability and advantages and disadvantages. Finally, future development trends are discussed.

参考文献/References:

[1] 洪志令, 姜青山, 董槐林, 等. 基于多阈值分割的快速舰船目标检测方法[J]. 计算机科学, 2006, 33(S11): 273-275.
HONG Zhiling, JIANG Qingshan, DONG Huailin, et al. Fast ship target detection based on multi-threshold segmentation[C]// Computer Science, 2006, 33(S11): 273-275.
[2] 韩青松, 贾振红, 杨杰, 等. 基于改进的Otsu算法的遥感图像阈值分割[J]. 激光杂志, 2010, 31(6): 33-34.
HAN Qingsong, JIA Zhenhong, YANG Jie, et al. Remote sensing image threshold segmentation based on improved Otsu algorithm[J]. Laser Magazine, 2010, 31(6): 33-34.
[3] 肖利平, 曹炬, 高晓颖. 复杂海地背景下的舰船目标检测[J]. 光电工程, 2007, 34(6): 6-10.
XIAO Liping, CAO Ju, GAO Xiaoying. Ship target detection in complex Haiti background [J]. Photoelectric Engineering, 2007, 34(6): 6-10.
[4] HUANG Z. A sea-land segmentation algorithm based on graph theory[C]//International Conference on Computer Vision in Remote Sensing, International Society for Optics and Photonics, 2016: 990111.
[5] 甘春生. 星载遥感图像舰船检测方法研究[D]. 沈阳: 沈阳航空航天大学, 2016.
GAN Chunsheng. Research on Ship Detection Method for Spaceborne Remote Sensing Image[D]. Shenyang: Shenyang University of Aeronautics and Astronautics, 2016.
[6] 陈青华, 谢晓方, 肖楚琬, 等. 基于海天/海岸线检测的舰船目标提取方法[J]. 红外, 2011, 32(6): 39-43.
CHEN Qinghua, XIE Xiaofang, XIAO Chuwan, et al. Ship target extraction method based on sea-sky/coastline detection[J]. Infrared, 2011, 32(6): 39-43.
[7] 刘青松, 谢晓方, 齐玉东, 等. 近海岸舰船目标红外图像中ROI的获取方法研究[J]. 红外, 2015, 36(11): 41-46.
LIU Qingsong, XIE Xiaofang, QI Yudong, et al. Study of acquisition method of ROI in infrared image of ship targets near shore[J]. Infrared, 2015, 36(11): 41-46.
[8] 李琨, 郑庆晖, 廖冬学. 基于梯度特征的图像自动分割方法[J]. 宇航学报, 2006, 27(6): 1288-1292.
LI Kun, ZHENG Qinghui, LIAO Dongxue. Automatic image segmentation method based on gradient feature[J]. Journal of Astronautics, 2006, 27(6): 1288-1292.
[9] 周浩天, 陈亮, 庄胤, 等. 多尺度积分图重建的红外遥感图像海陆分割算法[C]//全国信号和智能信息处理与应用学术会议专刊, 2017, 53(S2): 322-325.
ZHOU Haotian, CHEN Liang, ZHUANG Yin, et al. Infrared remote sensing image sea-land segmentation algorithm based on multi-scale integral image reconstruction[C]// National Symposium on Signal and Intelligent Information Processing and Applications, 2017, 53(S2): 322-325.
[10] XIAO H, XU Q, HU L. A sea-land segmentation algorithm based on gray smoothness ratio[C]//4th International Workshop on Earth Observation and Remote Sensing Applications, 2016: 117-121.
[11] 隆刚, 陈学佺. 高分辨率遥感图像港内舰船的自动检测方法[J]. 计算机仿真, 2007, 24(5): 198-201.
LONG Gang, CHEN Xuequan. Automated detection of ships in harbor using high resolution remote sensing images[J]. Computer Simulation, 2007, 24 (5): 198-201.
[12] 张风丽, 张磊, 吴炳方. 欧盟船舶遥感探测技术与系统研究的进展[J]. 遥感学报, 2007, 11(4): 552-562.
ZHANG Fengli, ZHANG Lei, WU Bingfang. Progress of European union ship remote sensing detection technology and system research[J]. Journal of Remote Sensing, 2007, 11(4): 552-562.
[13] 张振. 高分辨率可见光遥感图像港口及港内目标识别方法研究[D]. 合肥: 中国科学技术大学, 2009.
ZHANG Zheng. Research on the Method of Port and Port Target Recognition in High Resolution Visible Remote Sensing Image[D]. Hefei: China University of Science and Technology, 2009.
[14] ZHANG F, LI C, SHI L. Detecting and tracking dim moving point target in IR image sequence[J]. Infrared Physics & Technology, 2005, 46(4): 323-328.
[15] BAI X, ZHOU F, XIE Y, et al. Modified top-hat transformation based on contour structuring element to detect infrared small target[C]//IEEE Conference on Industrial Electronics and Applications, 2008: 575-579.
[16] BAI X, ZHOU F. Analysis of new top-hat transformation and the application for infrared dim small target detection[J]. Pattern Recognition, 2010, 43(6): 2145-2156.
[17] BAI X, BI Y. Derivative entropy-based contrast measure for infrared small-target detection[J]. IEEE Transactions on Geoscience & Remote Sensing, 2018, 56(4): 2452- 2466.
[18] LI M, CHEN M, SANA, et al. An improved method for infrared small target detection under various complex backgrounds[C]// IEEE International Conference on Big Data Analysis, 2017: 748-752.
[19] TIAN J, QI L, WANG Y. Spectral residual method of saliency detection based on the two-dimensional fractional Fourier transform domain[C]// International Conference on Graphic and Image Processing, 2015: 981704.
[20] TANG W, ZHENG Y, LU R, et al. A novel infrared dim small target detection algorithm based on frequency domain saliency[C]//IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference, 2017: 1053-1057.
[21] WANG X, LV G, XU L. Infrared dim target detection based on visual attention[J]. Infrared Physics & Technology, 2012, 55(6): 513-521.
[22] HAN J, MA Y, ZHOU B, et al. A robust infrared small target detection algorithm based on human visual system[J]. IEEE Geoscience & Remote Sensing Letters, 2014, 11(12): 2168-2172.
[23] QIN Y, LI B. Effective infrared small target detection utilizing a novel local contrast method[J]. IEEE Geoscience & Remote Sensing Letters, 2016, 13(12): 1890-1894.
[24] Nasiri M, Mosavi M R, Mirzakuchaki S. Infrared dim small target detection with high reliability using saliency map fusion[J]. Iet Image Processing, 2016, 10(7): 524-533.
[25] Lee E, Gu E, Yoo H J, et al. Moving dim-target tracking algorithm using template matching[C]// IEEE International Conference on Technological Advances in Electrical, Electronics and Computer Engineering, 2013: 294-297.
[26] LIU R, LU Y, GONG C, et al. Infrared point target detection with improved template matching[J]. Infrared Physics & Technology, 2012, 55(4): 380-387.
[27] 李国宽, 彭嘉雄. 基于小波变换的红外成像弱小目标检测方法[J]. 华中科技大学学报: 自然科学版, 2000, 28(5): 69-71.
LI Guokuan, PENG Jiaxiong. Detection of dim and small targets in infrared imaging based on wavelet transform[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2000, 28 (5): 69-71.
[28] TING W, YANG S. Weak and small infrared target automatic detection based on wavelet transform[C]//IEEE International Symposium on Intelligent Information Technology Application, 2008: 697-701.
[29] Alsulami F, Ahmadi K, Salari E. Detection and tracking of dim objects in infrared (IR) images using support vector machine[C]//IEEE International Conference on Electro Information Technology, 2016: 0357-0361.
[30] LIN H, SHI Z, ZOU Z. Fully convolutional network with task partitioning for inshore ship detection in optical remote sensing images[J]. IEEE Geoscience & Remote Sensing Letters, 2017, PP(99):1-5.
[31] 曲景影, 孙显, 高鑫. 基于CNN模型的高分辨率遥感图像目标识别[J]. 国外电子测量技术, 2016(8): 45-50.
QU Jingying, SUN Xian, GAO Xin. High resolution remote sensing image target recognition based on CNN model[J]. Foreign Electronic Measurement Technology, 2016 (8): 45-50.
[32] 殷文斌. 卷积神经网络在遥感目标识别中的应用研究[D]. 北京: 中国科学院大学(中国科学院遥感与数字地球研究所), 2017.
YIN Wenbin. Application of Convolutional Neural Network in Remote Sensing Target Recognition[D]. Beijing: University of Chinese Academy of Science (Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences), 2017.
[33] TANG J, DENG C, HUANG G B, et al. Compressed-domain ship detection on spaceborne optical image using deep neural network and extreme learning machine[J]. IEEE Transactions on Geoscience & Remote Sensing, 2014, 53(3): 1174-1185.
[34] Girshick R, Donahue J, Darrell T, et al. Rich feature Hierarchies for accurate object detection and semantic segmentation[C]//IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.
[35] Girshick R. Fast r-cnn [C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448.
[36] REN S, HE K, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Trans. Pattern Anal Mach Intell., 2017, 39(6): 1137-1149.
[37] LIU W, Anguelov D, Erhan D, et al. SSD: single shot multibox detector[C]//European Conference on Computer Vision, 2015: 21-37.
[38] Redmon J, Divvala S, Girshick R, et al. "You Only Look Once: Unified, Real-Time Object Detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016: 779-788.

备注/Memo

备注/Memo:
收稿日期:2018-04-10;修订日期:2018-06-19.
作者简介:丁荣莉(1992-),女,硕士研究生,主要从事图像预处理方面的研究工作。E-mail:1540352640@qq.com。
基金项目:国家自然科学基金(61605110)。
更新日期/Last Update: 2019-02-21