[1]薛秋条,宁巧娇,吴孙勇,等.基于JMS-SMC-PHD滤波的检测前跟踪算法[J].红外技术,2020,42(8):783-788.[doi:10.11846/j.issn.1001_8891.202008013]
 XUE Qiutiao,NING Qiaojiao,WU Sunyong,et al.A Track-Before-Detect Algorithm Based on a JMS-SMC-PHD Filter[J].Infrared Technology,2020,42(8):783-788.[doi:10.11846/j.issn.1001_8891.202008013]
点击复制

基于JMS-SMC-PHD滤波的检测前跟踪算法
分享到:

《红外技术》[ISSN:1001-8891/CN:CN 53-1053/TN]

卷:
42卷
期数:
2020年第8期
页码:
783-788
栏目:
出版日期:
2020-08-23

文章信息/Info

Title:
A Track-Before-Detect Algorithm Based on a JMS-SMC-PHD Filter
文章编号:
1001-8891(20)08-0783-06
作者:
薛秋条1宁巧娇1吴孙勇12蔡如华1伍雯雯1
1. 桂林电子科技大学 数学与计算科学学院,广西 桂林 541004 2. 广西密码学与信息安全重点实验室,广西 桂林 541004
Author(s):
XUE Qiutiao1NING Qiaojiao1WU Sunyong12CAI Ruhua1WU Wenwen1
 1. School of Mathematics and Computing Science, Guilin University of Electronic Technology, Guilin 541004, China; 2. Guangxi Key Laboratory of Cryptography and Information Security, Guilin 541004, China
关键词:
检测前跟踪跳跃马尔可夫系统概率假设密度滤波序贯蒙特卡罗机动弱小目标
Keywords:
track-before-detect jump-Markov systems probability hypothesis density(PHD) filter sequential Monte Carlo maneuvering small targets
分类号:
TN953
DOI:
10.11846/j.issn.1001_8891.202008013
文献标志码:
A
摘要:
针对低信噪比条件下机动目标的检测与跟踪问题,提出跳跃马尔可夫系统下的序贯蒙特卡罗概率假设密度(JMS-SMC-PHD)滤波的检测前跟踪算法。该算法在机动目标数目和模型未知情况下,直接利用红外传感器量测数据,通过在目标状态矢量中增加模型变量并利用马尔可夫模型概率转移矩阵结合序贯蒙特卡罗概率假设密度(SMC-PHD)滤波,实现机动弱小目标的检测前跟踪。仿真结果表明所提方法可以有效实现目标的检测与跟踪。
Abstract:
In view of the problem of detecting and tracking maneuvering small targets at low signal-to-noise, a track-before-detect algorithm based on sequential Monte Carlo probability hypothesis density filtering for Jump-Markov systems (JMS-SMC-PHD) is presented. Under the condition of an unknown number of maneuvering targets and unknown models, the algorithm achieves track-before-detect of small maneuvering targets by using measurement data from infrared sensors directly, adding a variable that denotes the dynamics model of the target, and using a Markov model probability transfer matrix combined with an SMC-PHD filter. Simulation results show that the proposed method can effectively implement target detection and tracking performance.

参考文献/References:

[1].罗少华, 徐晖, 徐洋, 等. 改进的MMPHD机动目标跟踪方法[J]. 航空学报, 2012, 33(7): 1296-1306.
[2].LUO S H, XU H, XU Y, et al. Improved MMPHD method for tracking maneuvering targets[J]. Journal of Aviation, 2012, 33(7): 1296-1306.
[3].GNING A, RISTIC B, MIHAYLOVA L. Closed Form PHD Filtering for Linear Jump Markov model[C]//9th International Conference on Information Fusion, 2006: 1-8. .
[4].RUGGIANO M, BOCQUEL M, DRIESSEN H. Multiple model sequential MCMC for jump Markov systems[C]//17th International Conference on Information Fusion (FUSION), 2014: 1-8.
[5].CHENG Ouyang, JI Hongbing, GUO Zhiqiang. Extensions of the SMC-PHD filters for jump Markov systems[J]. Signal Processing, 2012, 92: 1422-1430.
[6].MAHLER R. Statistical Multisource-Multitarget Information Fusion[M]. Boton London: Artech House, 2007.
[7].MAHLER R. Multitarget bayes filtering via first-order multitarget moments[J]. IEEE Trans. on Aerosp. Electron. Syst., 2003, 39(4): 1152-1178.
[8].MAHLER R. On multitarget jump-Markov filters[C]//15th International Conference on Information Fusion (FUSION), 2012: 149-156.
[9].PASHA S A, VO B N, TUAN H D, et al. A Gaussian mixture PHD filter for jump Markov system models[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(3): 919-936.
[10].杨峰, 张婉莹. 一种多模型贝努利粒子滤波机动目标跟踪算法[J]. 电子与信息学报, 2017, 39(3): 634-639.
[11].YANG F, ZHANG W Y. Multiple model Bernoulli particle filter for maneuvering target tracking[J]. Journal of Electronics and Information, 2017, 39(3): 634-639.
[12].石绍应, 杜鹏飞,张靖, 等. 雷达与EMS综合多目标检测、跟踪与识别[J]. 系统工程与电子技术, 2016, 38(7): 1524-1531.
[13].SHI S Y, DU P F, ZHANG J, et al. Multi-target detection, tracking and recognition with fusion of radar and ESM sensors[J]. Systems Engineering and Electronic Technology, 2016, 38(7): 1524-1531.
[14].RISTIC B, ARULAMPALAM S, and GORDOM N. Beyond the Kalman Filter: Particle Filters For Tracking Application[M]. London: Artech House, 2004: 239-257.
[15].占荣辉, 刘盛启, 欧建平等. 基于序贯蒙特卡罗概率假设密度滤波的多目标检测前跟踪改进算法[J]. 电子与信息学报, 2014, 36(11): 25932599.
[16].ZHAN R H, LIU S Q, OU J P, et al. Improved multitarget track before detect algorithm using the sequential Monte Carlo probability hypothesis density filter[J]. Journal of Electronics and Information, 2014, 36(11): 2593-2599.
[17].WEI Shuai, FENG Xinxi, WANG Quan. Track-before-detect algorithm based on Gaussian particle cardinalized probability hypothesis density[C]// 2nd International Conference on Information Technology and Management Engineering, 2017: 54-60.
[18].FENG Xun, JIANG Jing, WANG Zhibin, et al. A multi-target track before detect algorithm based on CPHD for pulse doppler radar[C]//IEEE International Conference on Computer Communication and The Internet, 2016: 181-185.
[19].LONG Yunli, XU Hui, AN Wei, et al. Track-before-detect for infrared maneuvering dim multi-target via MM-PHD[J]. Chinese Journal of Aeronautics, 2012, 25: 252-261.
[20].LI Suqi, YI Wei, KONG Lingjiang, et al. Multi-Bernoulli filter based track-before-detect for jump Markov models[C]//IEEE Radar Conference, 2014: 1257-1261.
[21].RISTIC B. Particle Filters For Random Set Models[M]. Newyork: Springer, 2013.
[22].第42卷 第8期 红 外 技 术 Vol.42 No.8
[23].2020年8月 Infrared Technology Aug. 2020
[24].第42卷 第8期 Vol.42 No.8
[25].2020年8月 薛秋条等:基于JMS-SMC-PHD滤波的检测前跟踪算法 Aug. 2020

备注/Memo

备注/Memo:
收稿日期:2018-04-09;修订日期:2018-05-12.
作者简介:薛秋条(1978-),女,河南灵宝人,讲师,硕士,研究方向为多目标检测与跟踪。
通信作者:吴孙勇(1981-),男,广西桂林人,教授,博士,研究方向为多目标检测与跟踪。E-mail:wusunyong121991@163.com。
基金项目:国家自然科学基金项目(61861008,11661024);广西研究生教育创新计划项目(2020YCXS084);广西高校数据分析与计算重点实验室开放基金项目资助。
更新日期/Last Update: 2020-08-19