[1]姚 敏,周 勤.一种低匹配误差敏感度的红外图像超分辨率算法[J].红外技术,2016,38(10):864-869.[doi:10.11846/j.issn.1001_8891.201610010]
 YAO Min,ZHOU Qin.An Infrared Images Super-resolution Algorithm with Low Registration Error Sensitivity [J].Infrared Technology,2016,38(10):864-869.[doi:10.11846/j.issn.1001_8891.201610010]
点击复制

一种低匹配误差敏感度的红外图像超分辨率算法
分享到:

《红外技术》[ISSN:1001-8891/CN:CN 53-1053/TN]

卷:
38卷
期数:
2016年第10期
页码:
864-869
栏目:
出版日期:
2016-10-25

文章信息/Info

Title:
An Infrared Images Super-resolution Algorithm with
Low Registration Error Sensitivity
文章编号:
1001-8891(2016)10-0864-06
作者:
姚 敏周 勤
武汉东湖学院 电信学院,湖北 武汉 430212
Author(s):
YAO MinZHOU Qin
Electronics & Information School of Wuhan Donghu College, Wuhan 430212, China
关键词:
红外图像超分辨率图像匹配匹配误差正规参数
Keywords:
infrared imagesuper-resolutionimage registrationregistration errorregularization parameter
分类号:
TN219
DOI:
10.11846/j.issn.1001_8891.201610010
文献标志码:
A
摘要:
提出了一种能够克服匹配误差的红外图像超分辨率算法。该算法采用了多通道自适应正规技术来处理由于红外图像匹配不精确而引起的病态问题。由于每幅低分辨率图像的匹配误差都不相同,因此每个通道的正规参数都自适应地被正规参数函数选择。提出的算法能够在没有任何先验信息的情况下对于图像匹配误差具有很强的鲁棒性。随着迭代过程的进行每个正规参数以及重建的图像不断地被更新。实验结果表明该算法相比传统算法在客观量度和视觉效果两个方面都具有较好性能。
Abstract:
This paper proposes an infrared images super-resolution algorithm which is insensitive to image registration error. The proposed method mainly applies a multichannel regularized technology to handle the ill-posed problems introduced by the infrared image registration error. Since the registration error in each low-resolution image has a different pattern, the regularization parameters are determined adaptively for each channel. The proposed algorithm is robust against the image registration error and it does not require any prior information. The regularization parameters and estimated high-resolution images are updated with the progress of iteration. The performance of the proposed method is validated by implementing a series of experiments. The experimental results show the proposed algorithm performs better than the conventional method, both in quantitative terms and in visual effects.

参考文献/References:

[1] 徐启飞. 医学图像自适应超分辨率重建算法的研究[D]. 广州: 南方医科大学, 2008.
XU Qifei. Research on Adaptive Super Resolution Reconstruction Algorithm of Medical Image[D]. Guangzhou: Southern Medical University, 2008
[2] 张艳, 王涛, 徐青, 等. 基于HMRF先验模型的HBE卫星遥感图像超分辨率重建[J]. 武汉大学学报: 信息科学版, 2007(7): 589-592.
ZHANG Yan, WANG Tao, XU Qing, et al. Super resolution reconstruction of HBE satellite remote sensing image based on HMRF model [J]. Journal of Wuhan University: Information Science Edition, 2007 (7): 589-592.
[3] 郭海霞, 刘海欧, 郭海龙, 等. 基于低层次计算机视觉的超分辨率图像重建[J]. 计算机工程与应用, 2009(29): 164-167.
GUO Haixia, LIU Haiou, GUO Hailong, et al. Super resolution image reconstruction based on the low level computer vision [J]. Computer Engineering and Application, 2009 (29): 164-167.
[4] 周琳, 杨娜. 基于离线双字典学习算法的图像超分辨率重建研究[J]. 红外技术, 2015, 37(4): 277-282.
ZHOU Lin, YANG Na. Image super resolution reconstruction based on offline double dictionary learning algorithm[J]. Infrared Technology, 2015, 37(4): 277-282
[5] 蒋晓慧, 赵勋杰, 李成金, 等.自适应加权的总变分正则化图像超分辨率重建[J]. 红外技术, 2014, 36(4): 290-293.
JIANG Xiao Hui, ZHAO Xun-jie, LI Cheng-jin, et al. A super-resolution algorithm based on adaptive weighted total variation[J]. Infrared Technology, 2014, 36(4): 290-293.
[6] ZHANG H C, YANG J C, ZHANG Y N, et al. Non-local Kernel regression for image and video restoration[J]. Computer Vision-ECCV, 2010, 6313(III): 566-579.
[7] YUAN Q Q, ZHANG L P, SHEN H F, et al. Adaptive multiple-frame image super-resolution based on U-curve[J]. IEEE Transactions on Image Processing, 2010, 19(12): 3157-3170.
[8] Gevrekci M, Gunturk B K, Altunbasak Y. POCS-based restoration of Bayer-sampled image sequences[C]//IEEE International Conference on Acoustics, Speech, and Signal Processing, 2007, I(PTS 1-3): 753-756.
[9] QIN F Q, HE X H, CHE W L, et al. Video super-resolution reconstruction based on subpixel registration and iterative back projection[J]. Journal of Electronic Imaging, 2009, 18: 0130071.
[10] Patti A J, Sezan M I, Tekalp A M. Super resolution video reconstruction with arbitrary sampling lattices and nonzero aperture time[J]. IEEE Transactions on Image Processing, 1997, 6(8): 1064-1076.

相似文献/References:

[1]郭水旺,王宝红,季钢,等.基于基因表达式编码算法的红外图像轮廓提取[J].红外技术,2013,35(01):038.
 GUO Shui-wang,WANG Bao-hong,JI Gang,et al. Infrared Image Contour Extraction Based on the Gene Expression Coding Algorithm[J].Infrared Technology,2013,35(10):038.
[2]孙爱平,皮冬明,安长亮,等. 光机装校阶段红外与可见光图像配准技术研究[J].红外技术,2013,35(01):050.
 SUN Ai-ping,PI Dong-ming,AN Chang-liang,et al. Study on IR/Visible Image Registration for Lens Assembly[J].Infrared Technology,2013,35(10):050.
[3]路建方,王新赛,肖志洋,等. 基于FPGA的红外图像自适应分段线性增强算法[J].红外技术,2013,35(02):102.
 LU Jian-fang,WANG Xin-sai,XIAO Zhi-yang,et al. An Adaptive Piecewise Linear Enhance Algorithm for Infrared Image Based on FPGA[J].Infrared Technology,2013,35(10):102.
[4]徐铭蔚,李郁峰,陈念年,等.多尺度融合与非线性颜色传递的微光与红外图像染色[J].红外技术,2012,34(12):722.
 XU Ming-wei,LI Yu-feng,CHEN Nian-nian,et al. Coloration of the Low Light Level and Infrared Image Using Multi-scale Fusion and Nonlinear Color Transfer Technique[J].Infrared Technology,2012,34(10):722.
[5]纪利娥,杨风暴,王志社,等. 基于边缘图像和SURF特征的可见光与红外图像的匹配算法[J].红外技术,2012,34(11):629.
 JI Li-e,YANG Feng-bao,WANG Zhi-she,et al.Visible and Infrared Image Matching Algorithm Based on Edge Image and SURF Features[J].Infrared Technology,2012,34(10):629.
[6]张红辉,罗海波,余新荣,等. 改进的神经网络红外图像非均匀性校正方法[J].红外技术,2013,35(04):232.
[7]张强,侯宁,刘红燕. 红外焦平面阵列非均匀性多点实时压缩校正研究[J].红外技术,2012,34(10):593.
 ZHANG Qiang,HOU Ning,LIU Hong-yan. Study on Real-time Multi-points Compressive Nonuniformity Correction of IRFPA[J].Infrared Technology,2012,34(10):593.
[8]路建方,王新赛,肖志洋,等. 基于灰度分层的FPGA红外图像伪彩色实时化研究[J].红外技术,2013,35(05):285.
 LU Jian-fang,WANG Xin-sai,XIAO Zhi-yang,et al. The Research on Real-time Pseudo-color of Infrared Image in FPGA Based on Gray Delaminating[J].Infrared Technology,2013,35(10):285.
[9]陈钱.红外图像处理技术现状及发展趋势[J].红外技术,2013,35(06):311.
 CHEN Qian.The Status and Development Trend of Infrared Image Processing Technology[J].Infrared Technology,2013,35(10):311.
[10]谭东杰,张安.基于局部直方图规定化的红外图像非均匀性校正[J].红外技术,2013,35(06):325.
 TAN Dong-jie,ZHANG An.Non-uniformity Correction Based on Local Histogram Specification[J].Infrared Technology,2013,35(10):325.

备注/Memo

备注/Memo:
收稿日期:2016-04-08;修订日期:2016-07-05.
作者简介:姚敏(1981-),女,湖北孝感人,副教授,主要从事光电图像信息处理研究。E-mail:13930599@qq.com。
基金项目:武汉东湖学院校级基金项目“分块压缩感知在图像重构中的应用研究”。
更新日期/Last Update: 2016-10-18