[1]李 蕾,张 葆,李全超.机载红外系统主反射镜的拓扑优化设计[J].红外技术,2016,38(8):648-652.[doi:10.11846/j.issn.1001_8891.201608004]
 LI Lei,ZHANG Bao,LI Quanchao.Topology Optimization of Primary Mirror in Airborne Infrared System[J].Infrared Technology,2016,38(8):648-652.[doi:10.11846/j.issn.1001_8891.201608004]
点击复制

机载红外系统主反射镜的拓扑优化设计
分享到:

《红外技术》[ISSN:1001-8891/CN:CN 53-1053/TN]

卷:
38卷
期数:
2016年第8期
页码:
648-652
栏目:
出版日期:
2016-08-20

文章信息/Info

Title:
Topology Optimization of Primary Mirror in Airborne Infrared System
文章编号:
1001-8891(2016)08-0648-05
作者:
李 蕾12张 葆1李全超1
1. 中国科学院长春光学精密机械与物理研究所 中国科学院航空光学成像与测量重点实验室,吉林 长春 130033;
2. 中国科学院大学,北京 100049
Author(s):
LI Lei12ZHANG Bao1LI Quanchao1
1. Key Laboratory of Airborne Optical Imaging and Measurement, Changchun Institute of Optics, Fine Mechanics and Physics,
Chinese Academy of Sciences, Changchun 130033, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China
关键词:
红外系统主反射镜轻量化设计拓扑优化
Keywords:
infrared systemprimary mirrorlightweight designtopology optimization
分类号:
TH745
DOI:
10.11846/j.issn.1001_8891.201608004
文献标志码:
A
摘要:
反射镜轻量化设计一直是光机结构设计领域的一项挑战性课题。针对某机载红外光学系统的主反射镜,提出了一种基于SIMP拓扑优化方法的反射镜轻量化设计流程,建立了反射镜拓扑优化的数学模型,以最小化镜体自重和抛光载荷作用下的镜面矢高位移RMS值为优化目标,同时考虑对称约束和拔模约束,对反射镜进行了拓扑优化设计。根据拓扑优化结果设计了新的反射镜轻量化结构,并将其与传统结构进行了对比。采用拓扑优化方法设计的反射镜具有更高的轻量化率,同时能够获得较高的面形精度。
Abstract:
The lightweight design of mirror has always been a challenging task in the field of opto-mechanical structure design. For the lightweight design of the primary mirror in an airborne infrared optical system, a lightweight mirror design procedure is proposed based on the SIMP topology optimization method. The mathematical model of topology optimization is established. With the objective of minimizing the RMS value of surface sag displacements under the load of gravity parallel to the optical axis and polishing pressure, the mirror is optimized by using topology optimization method while symmetry and casting constraint considered. According to the topology optimization result, a new lightweight mirror configuration is designed. The proposed mirror is compared with a traditional lightweight structure. The comparison results show that the lightweight ratio of the mirror obtained by using topology optimization method is higher than the traditional one. And a high optical surface accuracy can be achieved.

参考文献/References:

[1] 申洋, 唐明文. 机载红外搜索跟踪系统(IRST)综述[J]. 红外技术, 2003, 25(1): 13-18.
SHEN Yang, TANG Mingwen. An overview of infrared search and track (IRST)system[J]. Infrared Technology, 2003, 25(1): 13-18.
[2] LIU S, HU R, LI Q, et al. Topology optimization-based lightweight primary mirror design of a large-aperture space telescope[J]. Applied Optics, 2014, 53(35): 8318-25.
[3] Park Kang-Soo, Lee Jun Ho, Youn Sung-Kie. Lightweight mirror design method using topology optimization[J]. Optical Engineering, 2005, 44(5): 053002.
[4] Bendsoe M P, Kikuchi N. Generating optimal topology in structural design using a homogenization method[J]. Computer Methods in Applied Mechanics and Engineering, 1988, 71: 197-224.
[5] Bendsoe M P. Topology Optimization: Theory, Methods and Appli- cations[M]. Springer, 2003.
[6] HUANG X, XIE Y M. A further review of ESO type methods for topology optimization[J]. Structural and Multidisciplinary Optimization, 2010, 41(5): 671-683.
[7] Michael Y W, WANG X M, GUO D M. A level set for structural topology optimization[J]. Computer Methods in Applied Mechanics and Engineering, 2003, 192: 227-246.
[8] 张东阁, 傅雨田. 铝合金反射镜的发展与应用[J]. 红外技术, 2015, 37(10): 814-823.
ZHANG Dongge, FU Yutian. Development and application of aluminum mirrors in optical system[J]. Infrared Technology, 2015, 37(10): 814-823.
[9] 范磊, 赵勇志, 曹玉岩. 红外离轴系统金属反射镜设计与分析[J]. 红外技术, 2015, 37(5): 374-379.
FAN Lei, ZHAO Yongzhi, CAO Yuyan. Design and analysis of metal mirror for infrared off-axial system[J]. Infrared Technology, 2015, 37(5): 374-379.
[10] Vukobratovich D. Optimum Shapes for Lightweighted Mirrors[C]// Proceedings of SPIE, 1982, 332: 419-432.
[11] Keith B Doyle, Victor L Genberg, Gregory J Michels. Integrated Optomechanical Analysis[M]. 2nd edition, SPIE, 2012.

相似文献/References:

[1]李延东,杨俊彦,李亚文,等.AM-OLED微型显示器在红外系统中的应用[J].红外技术,2012,34(04):200.
 LI Yan-dong,YANG Jun-yan,LI Ya-wen,et al.Application of AM-OLED Microdisplay in Infrared Display Systems[J].Infrared Technology,2012,34(8):200.
[2]付跃刚,黄蕴涵.红外双视场枪瞄光学系统设计[J].红外技术,2014,36(6):451.[doi:10.11846/j.issn.1001_8891.201406006]
 FU Yue-Gang,HUANG Yun-Han.Design of Infrared Aiming Optical System[J].Infrared Technology,2014,36(8):451.[doi:10.11846/j.issn.1001_8891.201406006]
[3]薛 军,邹建华,张永亮.红外跟踪测量系统图像处理电路的设计[J].红外技术,2014,36(8):652.[doi:10.11846/j.issn.1001_8891.201408010]
 XUE Jun,ZOU Jian-hua,ZHANG Yong-liang.Design of Image-processing Circuit in Infrared Tracking and Measuring System[J].Infrared Technology,2014,36(8):652.[doi:10.11846/j.issn.1001_8891.201408010]
[4]关英姿,康立新.长波红外非制冷光学系统设计[J].红外技术,2008,30(二):079.
 GUAN Ying-zi,KANG Li-xin.LWIR Uncooled Optical System Design[J].Infrared Technology,2008,30(8):079.
[5]张宪亮,刘若凡,苏红雨,等.红外系统杂散光测量装置[J].红外技术,2014,36(12):961.[doi:10.11846/j.issn.1001_8891.201412005]
 ZHANG Xian-liang,LIU Ruo-fan,SU Hong-yu,et al.Stray Light Measurement Equipment for Infrared Optical System[J].Infrared Technology,2014,36(8):961.[doi:10.11846/j.issn.1001_8891.201412005]
[6]任国栋,张良,兰卫华,等.红外成像系统冷反射的定量分析[J].红外技术,2016,38(4):290.[doi:10.11846/j.issn.1001_8891.201604003]
 REN Guodong,ZHANG Liang,LAN Weihua,et al.Quantitative Analysis of the Narcissus of Infrared Imaging System[J].Infrared Technology,2016,38(8):290.[doi:10.11846/j.issn.1001_8891.201604003]
[7]张发平,张华卫.基于二元衍射面的长波无热化光学系统设计[J].红外技术,2020,42(1):025.[doi:10.11846/j.issn.1001_8891.202001004]
 ZHANG Faping,ZHANG Huawei.Design of Long-wave Athermal Optical System Based on Binary Diffraction Surface[J].Infrared Technology,2020,42(8):025.[doi:10.11846/j.issn.1001_8891.202001004]

备注/Memo

备注/Memo:
收稿日期:2016-02-02;修订日期:2016-04-05.
作者简介:李蕾(1989-),男,研究实习员,主要研究方向为结构优化设计。
基金项目:国家自然科学基金青年科学基金项目(61405192)。
更新日期/Last Update: 2016-08-17