[1]许德海,魏学明,彭垚,等.基于非完备字典的舰船特征提取和识别[J].红外技术,2016,38(9):765-769.[doi:10.11846/j.issn.1001_8891.201609009]
 XU Dehai,WEI Xueming,PENG Yao,et al.Feature Extraction and Recognition of Ships by an uncompleted dictionary[J].Infrared Technology,2016,38(9):765-769.[doi:10.11846/j.issn.1001_8891.201609009]
点击复制

基于非完备字典的舰船特征提取和识别
分享到:

《红外技术》[ISSN:1001-8891/CN:CN 53-1053/TN]

卷:
38卷
期数:
2016年第9期
页码:
765-769
栏目:
出版日期:
2016-09-19

文章信息/Info

Title:
Feature Extraction and Recognition of Ships by an uncompleted dictionary
文章编号:
1001-8891(2016)09-0765-05
作者:
许德海魏学明彭垚缪康任明艺
四川长虹电子科技有限公司,四川 绵阳 621000
Author(s):
XU DehaiWEI XuemingPENG YaoMIAO KangREN Mingyi
Sichuan Changhong Electronics Technology Development Co., Ltd, MianYang 621000, China
关键词:
舰船目标稀疏表示特征提取目标识别
Keywords:
infrared imageimage processingfeature extractionpattern recognition
分类号:
TN911.73
DOI:
10.11846/j.issn.1001_8891.201609009
文献标志码:
A
摘要:
提出了一种基于非完备特征字典的舰船特征提取和识别算法。借鉴稀疏表示理论的思想,根据红外图像中舰船的外形特征数据集构造特征字典,将目标信号进行分解,根据匹配字典中每个特征基原子得到特征响应,从而获得目标的特征表示,最后采用SVM一对一投票方法进行目标识别,得到最终的目标识别结果。仿真实验表明,与简单的标量区域描述方法和矩特征方法相比,本文方法得到的特征不仅具备更快的提取速度,而且可以更好地区分目标,提高目标识别的正确率。
Abstract:
This paper presents a novel approach of extracting ships feature by an uncompleted dictionary. First, we refer to the thought of sparse representation, and the uncompleted dictionary is constructed in terms of various ships shape in infrared images. Furthermore, using orthogonal matching pursuit algorithm to decompose the ship target signal, we obtain a ship response that describes the target feature. Finally, the classification result is decided by voting strategy. The results of experimentation indicate that the proposed approach has better performance than moments feature, compactness, rectangularity and so on.

参考文献/References:

[1] ?DeSilva C J S ,Lee G, Johnson R. All-aspect ship recognition in infrared images[C]//IEEE Proc. Conf. on Electronic Technology Directions to the Year 2000, Adelaide, 1995: 194-198.
[2] ?Paul W, Klamer S, Albert V, et al. Automatic classification of ships[C].Proceedings of SPIE-The International Society for Optical Engineering, 1998: 39-49.
[3] ?Lin Y, Bhanu B. Evolutionary Feature Synthesis for Object Recognition[J]. IEEE Transactions on Systems, Man and Cybernetics, 2005, 35(2): 156-170.
[4] ?Alves J, Herman J, Rowe N C. Robust recognition of ship types from an infrared silhouette[J]. Monterey California Naval Postgraduate School, 2004.
[5] ?Hu M K. Visual Pattern recognition by moment invariants[J]. IRE Transactions on Information Theory, 1962, 8(2): 179-187.
[6] ?Heikkil? J. Pattern matching with affine moment descriptors[J]. Pattern Recognition, 2004, 37: 1825-1834.
[7] ?Reeves A P, Prokop R J, Andrews S E. Three-dimensional shape analysis using moments and Fourier descriptors[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1988(10): 937-943.
[8] ?王丁禾, 牛照东, 张聘义. 利用模糊综合评判技术提取红外图像海天线[J]. 光电工程, 2012, 39(11): 67-74.
WANG Dinghe, NIU Zhaodong, ZHANG Pinyi. Sea-sky-line extraction in infrared images using Fuzzy synthetical judgment[J]. Opto-Electronic Engineering, 2012, 39(11): 67-74.
[9] ?王丁禾. 复杂场景红外舰船目标实时检测技术研究[D]. 长沙: 国防科技大学, 2012.
WANG Dinghe. Research on real-time techniques of infrared ship target detection in complex scenes[D]. Changsha: Graduate School of National University of Defense Technology, 2012.
[10] ?邢莎, 吉林, 雍杨, 等. 复杂场景下的自动红外舰船目标检测[J]. 红外技术, 2014, 36(4): 320-325.
XING Sha, JI Lin, YONG Yang, et al. Automatic infrared warship target detection under complicated background[J]. Infrared Technology, 2014, 36(4): 320-325.?
[11] ?孙玉宝. 图像稀疏表示模型及其在图像处理反问题中的应用[D]. 南京: 南京理工大学, 2010.
SUN Yubao. Sparse representation of images and its application to inverse problems in image processing[D]. Nanjing: Nanjing University of Science and Technology, 2010.
[12] ?Cnades E J. Ridgelets: theory and application[D]. Stanford: Stanford University, 1998.
[13] ?Candes E J, Donoho D L. Curvelets-a surprisingly effective non-adaptive representation for objects with edges[R]. Stanford University, 1999.
[14] ?Pennec E L, Mallat S. Sparse geometric image representations with bandelets[J]. IEEE Transaction on Image Processing, 2005, 14(4): 423-438.
[15] ?M N Do, Vetterli M. The contourlet transform: an efficient directional multiresolution image representation [J]. IEEE Transaction on Image Processing, 2005, 14(12): 2091-2106.
[16] ?Pati Y C, Rezaiifar R, Krishnaprasad P S. Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition[C]//1993 Conference Record of The Twenty-Seventh Asilomar Conference on Signals, Systems and Computers, 1993, 1: 40-44.
[17] ?Davis G, Mallat S, Avellaneda M. Greedy adaptive approximation[J]. Journal of Constructive Approximations, 1997, 13(1): 57-98.
[18] ?Bergeaud F, Mallat S G. Matching pursuit: adaptive representations of images and sounds[J]. Computational and Applied Mathematics, 1996, 15(2): 97-109.
[19] ?Mallat S G, Zhang Z. Matching pursuit with time-frequency dictionaries[J]. IEEE Transactions on Signal Processing, 1993, 14(12): 3397-3415.
[20] ?Mallat S G, Davis G, Zhang Z. Adaptive time-frequency decompositions[J]. Optical Engineering, 1994, 33(7): 2183-2191.
[21] ?Graf A B, Smola A J, S Borer. Classification in a normalized feature space using support vector machines[J]. IEEE Transactions on Neural Net Works, 2003, 14(3): 597-605.
[22] ?Tan Y, Wang J. A support vector machine with a hybrid kernel and minimal Vapnik-Chervonenkis dimension[J]. IEEE Transactions on Knowledge and Data Engineering, 2004, 16(4): 385-395.
[23] ?Weston J, Watkins C. Multi-class support vector machines[R]. Technical Report CSD-TR-98-04, Department of Computer Science, Royal Holloway, University of London, May, 1998.
[24] ?赵斌. 多值SVM分类投票法的改进[D]. 武汉: 武汉科技大学, 2007.
ZHAO Bin. The improvement of the voting method for multi-class SVM classification[D]. Wuhan: Wuhan University of Science and Technology, 2007.

相似文献/References:

[1]薛模根,刘存超,徐国明,等.基于多尺度字典的红外与微光图像融合[J].红外技术,2013,35(11):696.[doi:10.11846/j.issn.1001_8891.201311005]
 XUE Mo-gen,LIU Cun-chao,XU Guo-ming,et al.Infrared and Low Light Level Image Fusion Based on Multi-scale Dictionary[J].Infrared Technology,2013,35(9):696.[doi:10.11846/j.issn.1001_8891.201311005]
[2]孙君顶,赵慧慧.图像稀疏表示及其在图像处理中的应用[J].红外技术,2014,36(7):533.[doi:10.11846/j.issn.1001_8891.201407004]
 SUN Jun-ding,ZHAO Hui-hui.Sparse Representation and Applications in Image Processing[J].Infrared Technology,2014,36(9):533.[doi:10.11846/j.issn.1001_8891.201407004]
[3]钱 昂,何友金,刘 亮.反舰导弹中波与长波红外成像制导优势对比研究[J].红外技术,2014,36(8):671.[doi:10.11846/j.issn.1001_8891.201408014]
 QIAN Ang,HE You-jin,LIU Liang.A Comparative Study of the Advantage of Infrared Imaging Guidance Anti-ship Missiles Based on Medium Wave and Long-Wave[J].Infrared Technology,2014,36(9):671.[doi:10.11846/j.issn.1001_8891.201408014]
[4]王志社,杨风暴,彭智浩.基于NSST和稀疏表示的多源异类图像融合方法[J].红外技术,2015,37(三):210.[doi:10.11846/j.issn.1001_8891.201503008]
 WANG Zhi-she,YANG Feng-bao,PENG Zhi-hao.Multi-source Heterogeneous Image Fusion Based on NSST and Sparse Presentation[J].Infrared Technology,2015,37(9):210.[doi:10.11846/j.issn.1001_8891.201503008]
[5]莫建文,曾儿孟,张 彤,等.基于几何字典学习和耦合约束的超分辨率重建[J].红外技术,2015,37(八):664.[doi:10.11846/j.issn.1001_8891.201508007]
 MO Jian-wen,ZENG Er-meng,ZHANG Tong,et al.Super-resolution Reconstruction Based on Geometric Dictionary Learning and Coupled Regularization[J].Infrared Technology,2015,37(9):664.[doi:10.11846/j.issn.1001_8891.201508007]
[6]张 强,张爱梅,王华敏,等.基于自训练字典学习的单幅图像的超分辨率重建[J].红外技术,2015,37(九):736.[doi:10.11846/j.issn.1001_8891.201509006]
 ZHANG Qiang,ZHANG Ai-mei,WANG Hua-min,et al.Single Image Super-resolution Reconstruction Based on Self-learning Dictionary[J].Infrared Technology,2015,37(9):736.[doi:10.11846/j.issn.1001_8891.201509006]
[7]梅家诚,王 瑞,叶汉民.结合稀疏表示与图像压缩融合的目标检测[J].红外技术,2016,38(3):218.[doi:10.11846/j.issn.1001_8891.201603008]
 MEI Jiacheng,WANG Rui,YE Hanmin.Compressive Fusion and Target Detection Based on Sparse Representation[J].Infrared Technology,2016,38(9):218.[doi:10.11846/j.issn.1001_8891.201603008]
[8]杨春伟,王仕成,廖守亿,等.基于协方差描述子稀疏表示的前视红外建筑物目标跟踪锁定[J].红外技术,2016,38(5):389.[doi:10.11846/j.issn.1001_8891.201605006]
 YANG Chunwei,WANG Shicheng,LIAO Shouyi,et al.Forward-looking-infrared Building Object Tracking Based on Sparse Representation of Covariance Descriptor [J].Infrared Technology,2016,38(9):389.[doi:10.11846/j.issn.1001_8891.201605006]
[9]廖佳俊,刘志刚,姜江军,等.基于稀疏表示分步重构算法的高光谱目标检测[J].红外技术,2016,38(8):699.[doi:10.11846/j.issn.1001_8891.201608013]
 LIAO Jiajun,LIU Zhigang,JIANG Jiangjun,et al.Target Detection in Hyperspectral Image Using Two Steps Reconstruction Based on Sparse Representation [J].Infrared Technology,2016,38(9):699.[doi:10.11846/j.issn.1001_8891.201608013]
[10]赵婷婷,牛武斌,李良超,等.海面上舰船目标的紫外散射特性研究[J].红外技术,2019,41(8):719.[doi:10.11846/j.issn.1001_8891.201908005]
 ZHAO Tingting,NIU Wubin,LI Liangchao,et al.Study on Ultraviolet Scattering Characteristics of Ship Targets on the Sea Surface[J].Infrared Technology,2019,41(9):719.[doi:10.11846/j.issn.1001_8891.201908005]

备注/Memo

备注/Memo:
收稿日期:2016-01-06;修订日期:2016-03-02.
作者简介:许德海(1992-),男,黑龙江省鹤岗市人,本科,从事数字图像处理和机器视觉。

更新日期/Last Update: 2016-09-19