[1]张 林,陆辉山,闫宏伟,等.煤质的近红外光谱定量分析研究[J].红外技术,2013,35(08):522-525.[doi:10.11846/j.issn.1001_8891.201308014]
 ZHANG Lin,LU Hui-shan,YAN Hong-wei,et al.Quantitative Analysis and Research on Coal Quality Based on Near Infrared Spectrum [J].Infrared Technology,2013,35(08):522-525.[doi:10.11846/j.issn.1001_8891.201308014]
点击复制

煤质的近红外光谱定量分析研究
分享到:

《红外技术》[ISSN:1001-8891/CN:CN 53-1053/TN]

卷:
35卷
期数:
2013年08期
页码:
522-525
栏目:
出版日期:
2013-08-20

文章信息/Info

Title:
Quantitative Analysis and Research on Coal Quality Based on Near Infrared Spectrum
文章编号:
1001-8891(2013)08-0522-04
作者:
张 林陆辉山闫宏伟高 强王福杰
中北大学机械工程与自动化学院,山西 太原 030051
Author(s):
ZHANG LinLU Hui-shanYAN Hong-weiGAO QiangWANG Fu-jie
College of Mechanical Engineering & Automatization, North University of China, Taiyuan 030051, China
关键词:
近红外光谱煤粉样品偏最小二乘法主成分分析线性相关定量分析
Keywords:
near infrared spectrumpulverized coal samplespartial least squares(PLS)principal component analysis(PCR)linear correlationquantitative analysis
分类号:
TD94
DOI:
10.11846/j.issn.1001_8891.201308014
文献标志码:
A
摘要:
实验中首先采用多元散射校正(MSC)的方法对煤粉样品的漫反射光谱进行了预处理,然后分别通过偏最小二乘法(PLS)和主成分分析(PCR)的方法建立煤粉样品的近红外光谱的全水分、挥发分和灰分的定量分析模型,通过预测集对建立的模型进行验证,发现利用偏最小二乘法建立的煤粉全水分模型最优,r=0.975,RMSEC=0.166,RMSEP=0.169,RPD=3.22,通过主成分分析方法建立的挥发分和灰分的模型最优,最后通过选取验证集样本对建立的模型进行了验证,得出利用近红外光谱分析技术间接对煤质进行定量分析是可行的。
Abstract:
In the experiment, firstly, quantitative analysis models of the total moisture, volatile matter and ash content of the near infrared spectral of the pulverized coal samples are respectively established by adopting the method of partial least squares. As the model has high predicted precision and good stability, we can see that is feasible to conduct nondestructive testing to the pulverized coal indirectly using the NIR analysis method. Then a further study is made on the correlation of the total moisture, volatile matter and ash content in pulverized coal samples respectively, through which we found that the ash content and volatile matter in the pulverized coal sample have a high linear correlation. Finally, by comparing the ash content value obtained from the correlation function between the ash content and volatile matter with that obtained from partial least squares model, we can find that the ash content value obtained from the linear correlation between ash content and volatile matter in the pulverized coal ash is more accurate and precise.

参考文献/References:

[1] 张孝亮. 快速煤质分析仪在集装站煤质管理中的应用[J]. 煤质技术, 2010(5): 42-44.
[2] 邬蓓蕾, 林振兴, 王群威, 等. 傅里叶变换近红外光谱定量分析煤炭挥发分[J]. 岩矿测试, 2006, 25(2): 133-136.
[3] 赵凯, 雷萌. 近红外光谱灰分预测模型中煤炭样品的优化方法[J]. 工矿自动化, 2012(9): 35-38.
[4] 李民赞. 光谱分析技术及应用[M]. 北京: 科学出版社, 2006.
[5] 成芳, 樊玉霞, 廖宜涛. 应用近红外漫反射光谱对猪肉肉糜进行定性定量检测研究[J]. 光谱学与光谱分析, 2012, 32(2): 354-359.
[6] Cozzolino D, Smyth H E, Gishen M. Feasibility study on the use of visible and near-infrared spectroscopy together with chemometrics to discriminate between commercial white wines of different varietal origins[J]. J. Agric. Food Chem., 2003, 51(26): 7703-7708.
[7] 严衍禄, 赵龙莲, 韩东海, 等. 近红外光谱分析基础与应用[M]. 北京: 中国轻工业出版社, 2005: 13.
[8] 孙通, 徐惠荣, 应义斌. 近红外光谱分析技术在农产品/食品品质在线无损检测中的应用研究进展[J]. 光谱学与光谱分析, 2009, 24(1): 122-129.
[9] Roman M Balabin, Ravilya Z Safieva, Ekaterina I Lomakina. Comparison of linear and nonlinear calibration models based on near infrared (NIR) spectroscopy data for gasoline properties prediction[J]. Chemometr Intell Lab, 2007, 88(2): 183-188.
[10] 徐军伟, 崔国圣, 宋兆东. 煤质分析在线检测装置[J]. 江苏电机工程, 2005(1): 1-2.
[11] 杨孟达. 煤矿地质学[M]. 北京: 煤矿工业出版社, 2000.
[12] 李凤瑞, 唐玉国, 小宝蓝. 应用近红外光谱分析技术测量煤质发热量[J]. 电站系统工程, 2004(3): 19-20.
[13] 方全国. 煤质在线分析技术原理及应用[J]. 煤质技术, 2006(6): 23-25.
[14] 陆婉珍, 袁洪福, 徐广通. 现代近红外光谱分析技术[M]?1版. 北京: 中国石化出版社, 2000.
[15] 朱承希, 施家明. 基于ICEPAK软件的一种红外成像系统热设计[J].红外技术, 2013, 35(4): 211-216.
[16] 于洋, 金亚平, 潘兆鑫, 等. 长波红外制冷型光学系统超宽温消热差设计[J]. 红外技术, 2011, 33(10): 585-617.

相似文献/References:

[1]杜阅光,崔登科,程小东,等. 声光可调近红外光谱技术用于打叶复烤片烟化学成分均质化生产控制[J].红外技术,2012,34(10):614.
 DU Yue-guang,CUI Deng-k,CHENG Xiao-dong,et al. Homogenization Self-Control System of Chemical Composition in Tobacco Threshing and Redrying Process with Acousto-optic Tunable Near-infrared Spectroscopy[J].Infrared Technology,2012,34(08):614.
[2]赵海东,申金媛,刘润杰,等.基于聚类的烟叶近红外光谱有效特征的筛选方法[J].红外技术,2013,35(10):659.[doi:10.11846/j.issn.1001_8891.201310013]
 ZHAO Hai-dong,SHEN Jin-yuan,LIU Run-jie,et al.Tobacco Leaf Selection Method of the Near-infrared Spectroscopy Effective Feature Based on the Cluster [J].Infrared Technology,2013,35(08):659.[doi:10.11846/j.issn.1001_8891.201310013]
[3]严文娟,李刚,林凌.基于近红外光谱的舌诊疾病识别的研究[J].红外技术,2010,32(8):487.
 YAN Wen-juan,LI Gang,LIN Ling.Research on Discrimination of Tongue Diseases with Near Infrared Spectroscopy[J].Infrared Technology,2010,32(08):487.
[4]覃鸿,马竞一,陈绍江,等.光照强度和光阑孔径对近红外漫透射光谱鉴别单倍体玉米影响研究[J].红外技术,2015,37(一):078.[doi:10.11846/j.issn.1001_8891.201501016]
 QIN Hong,MA Jing-yi,CHEN Shao-jiang,et al.Research on the Effect of the Intensity and Amount of Light Source?to Maize Haploid Identification Based on Near Infrared Diffuse Transmission[J].Infrared Technology,2015,37(08):078.[doi:10.11846/j.issn.1001_8891.201501016]
[5]张银,周孟然.近红外光谱分析技术的数据处理方法[J].红外技术,2007,29(6):345.
 ZHANG Yin,ZHOU Meng-ran.Methods for Data Process of Near Infrared Spectroscopy Analysis[J].Infrared Technology,2007,29(08):345.
[6]刘辉军,吕进,张维刚,等.茶叶中茶多酚含量的近红外光谱检测模型研究[J].红外技术,2007,29(7):429.
 LIU Hui-jun,LU Jin,ZHANG Wei-Gang,et al.A Testing Model for Tea Polyphenol Content Based on NIR[J].Infrared Technology,2007,29(08):429.
[7]毕卫红,许峰,吕超.水果含糖量近红外检测系统及实验[J].红外技术,2007,29(11):674.
 BI Wei-hong,XU Feng,LV Chao.A Measuring System for Sugar Content of Fruits?and Related Experiment Based on NIRS Technology[J].Infrared Technology,2007,29(08):674.
[8]陈斌,王豪.专利算法在白酒酒精度近红外光谱分析模型转移中的应用[J].红外技术,2006,28(4):245.
 CHEN Bin,WANG Hao.Calibration Transfer Between Near-infrared Spectrometric Instrument for the Determination of Wine Alcoholicity Using Shenk’s Algorithm[J].Infrared Technology,2006,28(08):245.
[9]张严,赵忠盖,刘飞.黄酒总酚含量检测:一种基于GA-LSSVM的近红外光谱波段选择方法[J].红外技术,2015,37(七):613.[doi:10.11846/j.issn.1001_8891.201507014]
 ZHANG Yan,ZHAO Zhong-gai,LIU Fei.Detection of Total Phenol of Chinese Yellow Wine: A NIRS Band Selection Method Based on GA-LSSVM[J].Infrared Technology,2015,37(08):613.[doi:10.11846/j.issn.1001_8891.201507014]
[10]陈玲玲,夏方山,毛培胜,等.近红外光谱技术在种子硬实检测中的研究进展[J].红外技术,2015,37(九):793.[doi:10.11846/j.issn.1001_8891.201509017]
 CHEN Ling-ling,XIA Fang-shan,MAO Pei-sheng,et al.Application of Near Infrared Spectroscopy (NIR) Technique in Hard Seed Testing Research [J].Infrared Technology,2015,37(08):793.[doi:10.11846/j.issn.1001_8891.201509017]

备注/Memo

备注/Memo:
收稿日期:2013-03-19;修订日期:2013-05-10.
作者简介:张林(1986-),男,黑龙江省讷河市人,硕士生,主要从事多元化信息融合与信息处理方面的研究。
基金项目:国家自然基金,编号:41201294;江苏省农产品物理加工重点实验室开放基金,编号:JAPP2012-2;山西省青年科技基金,编号:009021019-3。
更新日期/Last Update: 2013-08-30