[1]胡伟达,李庆,温洁,等.InGaAs/InP红外雪崩光电探测器的研究现状与进展[J].红外技术,2018,40(3):201-208.[doi:10.11846/j.issn.1001_8891.201803001]
 HU Weida,LI Qing,WEN Jie,et al.Recent Progress in InGaAs/InP Infrared Avalanche Photodetectors[J].Infrared Technology,2018,40(3):201-208.[doi:10.11846/j.issn.1001_8891.201803001]
点击复制

InGaAs/InP红外雪崩光电探测器的研究现状与进展
分享到:

《红外技术》[ISSN:1001-8891/CN:CN 53-1053/TN]

卷:
40
期数:
2018年第3期
页码:
201-208
栏目:
出版日期:
2018-03-20

文章信息/Info

Title:
Recent Progress in InGaAs/InP Infrared Avalanche Photodetectors
文章编号:
1001-8891(2018)03-0201-08
作者:
胡伟达李庆温洁王文娟陈效双陆卫
中国科学院上海技术物理研究所,红外物理国家重点实验室
Author(s):
HU WeidaLI QingWEN JieWANG WenjuanCHEN XiaoshuangLU Wei
State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics of CAS
关键词:
InGaAs/InP红外雪崩光电探测器暗电流机制单光子探测表面等离共振效应
Keywords:
InGaAs/InPinfrared avalanche photodetectorsdark current mechanismsingle-photon detectionsurface plasmon resonance effect
分类号:
O572
DOI:
10.11846/j.issn.1001_8891.201803001
文献标志码:
A
摘要:
近年来,量子卫星通信、主动成像等先进技术的应用取得了较大的进展,InGaAs/InP雪崩光电探测器作为信息接收端的核心器件起到了至关重要的作用。本文系统介绍了InGaAs/InP雪崩光电探测器的工作原理,分析了器件结构设计对暗电流特性的影响,对盖格模式下多种单光子探测电路进行了综述,同时对新型金属-绝缘体-金属结构设计的研究进展进行了介绍和展望。
Abstract:
In recent years, quantum satellite communication and active imaging, where InGaAs/InP infrared avalanche photodetectors play a key role in single-photon detection, have progressed considerably. This review provides a detailed introduction to the basic principle of InGaAs/InP infrared avalanche photodetectors. The impact of the device structure characteristics on the dark current avalanche mechanism is summarized. Different circuits related to single-photon detection technology, running in Geiger mode, are presented. Several novel metal-insulator-metal structures are introduced for enhancing the quantum efficiency of InGaAs/InP infrared avalanche photodetectors, and their prospects are discussed.

参考文献/References:

[1]? Joseph C. Passive infrared detection: theory and application[M]. Kluwer academic publishers, 1999: 225.
[2]? Jiang X, Itzler M A, Ben Michael R, et al. InGaAsP-InP Avalanche Photodiodes for Single Photon Detection[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(4):895-905.
[3]? WANG Jianlu, FANG Heihai, WANG Xudong, et al. Recent Progress on Localized Field Enhanced Two-dimensional Material Photodetectors from Ultraviolet-Visible to Infrared[J]. Small, 2017, 13(35): 1700894.?
[4]? Lacaita A, Francese P A, Zappa F, et al. Single-photon detection beyond 1 μm: performance of commercially available germanium photodiodes[J]. Applied Optics, 1994, 33(30): 6902-6918.
[5]? Kang Y, Mages P, Clawson A R, et al. Fused InGaAs-Si avalanche photodiodes with low-noise performances[J]. IEEE Photonics Technology Letters, 2002, 14(11): 1593-1595.
[6]? QING Li, BAI JIE, LV Yanqiu, et al. Analysis of ultraviolet and infrared dual-color focal-plane arrays detector based on Pt/CdS and InSb junctions[J]. J. Infrared Millim. Waves, 2017, 36(4): 385-388.
[7]? GONG F, FANG H H, WANG P, et al. Visible to near-infrared photodetectors based on MoS2 vertical Schottky junctions[J]. Nanotechnology, 2017, 19(3): 48.
[8]? WANG Peng, LIU Shanshan, LUO Wenjin, et al. Arrayed Van Der Waals Broadband Detectors for Dual-Band Detection[J]. Advanced Materials, 2017, 29(16): 1604439.?
[9]? WU B H, XIA G Q, LI Z H, et al. Sulphur passivation of the InGaAsSb/GaSb photodiodes[J]. Applied Physics Letters, 2002, 80(7): 1303-1305.
[10]? WANG X D, HU W D, CHEN X S, et al. Dark current simulation of InP/In0.53Ga0.47As/InP p-i-n photodiode[J]. Optical & Quantum Electronics, 2008, 40(14-15): 1261-1266.
[11]? 郝国强. InGaAs红外探测器器件与物理研究[D]. 上海: 中科院上海微系统与信息技术研究所, 2006.
HAO Guoqiang. Study on Physics and Devices of InGaAs Infrared Detectors, Shanghai: Shanghai Institute of Microsystem and Information Technology,2006 )
[12]? Porod W, Ferry D K. Modification of the virtual-crystal approximation for ternary III-V compounds[J]. Physical Review B Condensed Matter, 1983, 27(4): 2587-2589.
[13]? Itzler M A, Patel K, Jiang X, et al. Comparison of 32×128 and 32×32 Geiger-mode APD FPAs for single photon 3D LADAR imaging[J]. Proceedings of SPIE - The International Society for Optical Engineering, 2011, 8033(3): 80330G-1-80330G-12.
[14]? Verghese S, Donnelly J P, Duerr E K, et al. Arrays of InP-based Avalanche Photodiodes for Photon Counting[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(4): 870-886.
[15]? Isoshima T, Isojima Y, Hakomori K, et al. Ultrahigh sensitivity single‐photon detector using a Si avalanche photodiode for the measurement of ultra weak biochemilumine scence[J]. Review of Scientific Instruments, 1995, 66(4): 2922-2926.
[16]? LIAO S K, CAI W Q, LIU W Y, et al. Satellite-to-ground quantum key distribution[J]. Nature, 2017, 549(7670): 43-47.
[17]? REN J G, XU P, YONG H L, et al. Ground-to-satellite quantum teleportation[J]. Nature, 2017, 549(7670): 70-73.
[18]? Mcintyre R J. Multiplication noise in uniform avalanche diodes[J]. IEEE Transactions on Electron Devices, 1966, 13(1):164-168.
[19]? Cook L W, Bulman G E, Stillman G E. Electron and hole impact ionization coefficients in InP determined by photo multiplication measurements[J]. Applied Physics Letters, 1982, 40(7): 589-591.
[20]? Stillman G E, Wolfe C M. Avalanche photodiodes, in Semiconductors and Semimetals[M]. New York:Academic,1977: 291-393.
[21]? HU W D, CHEN X S, YIN F, et al. Analysis of temperature dependence of dark current mechanisms for long-wavelength HgCdTe photovoltaic infrared detectors[J]. Journal of Applied Physics, 2009, 105(10): 104502-104502-8.
[22]? Forrest S R, Leheny R F, Nahory R E, et al. In0.53Ga0.47As photodiodes with dark current limited by generation-recombination and tunneling[J]. Applied Physics Letters, 1980, 37(3): 322-325.
[23]? 尼曼. 半导体物理与器件[M]. 北京: 电子工业出版社, 2013: 139.
Neamen. Semiconductor physics and devices[M]. Beijing: Publishing House of Electronics Industry, 2013:139.
[24]? ZENG Q Y, WANG W J, HU W D, et al. Numerical analysis of multiplication layer on dark current for InGaAs/InP single photon avalanche diodes[J]. Optical & Quantum Electronics, 2014, 46(10): 1203-1208.
[25]? XU J, CHEN X, WANG W, et al. Extracting dark current components and characteristics parameters for InGaAs/InP avalanche photodiodes[J]. Infrared Physics & Technology, 2016, 76: 468-473.
[26]? 曾巧玉. InGaAs/InP单光子雪崩光电二极管的制备及研究[D]. 上海: 中科院上海技术物理研究所, 2014.
ZENG Qiaoyu. Fabrication and Study of InGaAs/InPAvalanche photodiodes(APDs)[D]. Shanghai: Shanghai institute of technical physics, Chinese Academy of Sciences, 2014.
[27]? 梁焰. 基于InGaAs/InPAPD高速单光子探测方法及应用[D]. 上海: 华东师范大学, 2014.
LIANG Yan. High-speed single-photon detection based InGaAs/InP APD and its applications[D]. Shanghai: East China Normal University, 2014.
[28]? 白郭敏, 梁焰, 曾和平. 基于国产的InGaAs/InPAPD的高速单光子探测[J]. 电子测量技术, 2017, 40: 6.
BAI Guomin, LIANG Yan, ZENG Heping, High-speed single-photon detection based on domestic InGaAs/InP APD[J]. Electronic Measurement Technology, 2017, 40: 6.
[29]? LIANG YAN, JIAN Yi, CHEN Xiuliang, et al. Room-Temperature Single-Photon Detector Based on InGaAs/InP Avalanche Photodiode With Multichannel Counting Ability[J]. IEEE Photonics Technology Letters, 2010, 23(2):115-117.?
[30]? WEN J, WANG W J, LI N, et al. Light enhancement by metal-insulator- metal plasmonic focusing cavity[J]. Optical & Quantum Electronics, 2016, 48(2):150.?
[31]? WEN J, WANG W J, LI N, et al. Plasmonic optical convergence microcavity based on the metal-insulator-metal microstructure[J]. Applied Physics Letters, 2017, 110(23): 187901-62.?

备注/Memo

备注/Memo:
收稿日期:2018-01-10;修订日期:2018-03-12.
作者简介:胡伟达(1979-),男,研究员,博士生导师,主要从事红外探测器的机理、研制及应用研究。E-mail:wdhu@mail.sitp.ac.cn。
基金项目:国家杰出青年基金项目(61725505)。

更新日期/Last Update: 2018-03-19