[1]刘 毅,彭晓昱,王作斌,等.基于超材料的太赫兹波吸波材料[J].红外技术,2015,37(九):756-763.[doi:10.11846/j.issn.1001_8891.201509010]
 LIU Yi,PENG Xiao-yu,WANG Zuo-bin,et al.Terahertz-wave Absorber Based on Metamaterial[J].Infrared Technology,2015,37(九):756-763.[doi:10.11846/j.issn.1001_8891.201509010]
点击复制

基于超材料的太赫兹波吸波材料
分享到:

《红外技术》[ISSN:1001-8891/CN:CN 53-1053/TN]

卷:
37卷
期数:
2015年第九期
页码:
756-763
栏目:
出版日期:
2015-09-20

文章信息/Info

Title:
Terahertz-wave Absorber Based on Metamaterial
文章编号:
1001-8891(2015)09-0756-08
作者:
?刘 毅12彭晓昱12王作斌1董家蒙12魏东山2崔洪亮2杜春雷2
1.长春理工大学 国家纳米操纵与制造国际联合研究中心,长春 130022;
2.中国科学院重庆绿色智能技术研究院 跨尺度制造技术重庆市重点实验室,重庆 400714
Author(s):
?LIU Yi12PENG Xiao-yu12WANG Zuo-bin1DONG Jia-meng12WEI Dong-shan2CUI Hong-liang2DU Chun-lei2
1.International Research Centre for Nano Handling & Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China; 2.Key Laboratory of Multiscale Manufacturing Technology of Chongqing; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
关键词:
太赫兹波吸波材料超材料
Keywords:
terahertz-waveabsorbermetamaterial
分类号:
O441,TB34
DOI:
10.11846/j.issn.1001_8891.201509010
文献标志码:
A
摘要:
?超材料是一种人工设计的具有周期单元阵列结构的电磁材料,具有超常物理特性。基于超材料的太赫兹吸波材料在太赫兹技术领域有许多潜在的应用。简述了超材料吸波材料的理论基础,综述了国内外在单频、双频、多频带和宽带太赫兹超材料吸波材料领域的研究进展,并展望了太赫兹吸波材料研究的未来发展方向和趋势。
Abstract:
?As an artificially-engineered electromagnetic material with the structure of periodic unit cell array, metamaterial has shown abnormal physical properties. Metamaterial-based terahertz absorbers have numerous potential applications in terahertz fields. In this review, the brief introduction of theoretical basis of metamaterial perfect absorbers is presented. The developments of the single-band, dual-band, multi-band and broadband metamaterial absorbers operating in terahertz range are reviewed. Perspectives and future work for terahertz metamaterial absorbers are also presented.

参考文献/References:

[1] Veselago V G. The electrodynamics of substances with simultaneously negative values of ε and μ[J]. Soviet Physics Uspekhi, 1968, 10(4): 509-514.
[2] Smith D R, Padilla W J, Vier D C, et al. Composite medium with simultaneously negative permeability and permittivity[J]. Physical Review Letters, 2000, 84(18): 4184.
[3] Smith D R, Pendry J B, Wiltshire M C K. Metamaterials and negative refractive index[J]. Science, 2004, 305: 788-792.
[4] Zhang X, Liu Z. Superlenses to overcome the diffraction limit[J]. Nature Materials, 2008, 7(6): 435-441.
[5] Soukoulis C M, Wegener M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials[J]. Nature Photonics, 2011, 5(9): 523-530.
[6] Landy N I, Sajuyigbe S, Mock J J, et al. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20): 7402-7406.
[7] KNOTT E F, Shaeffer J F, Tuley M T. Radar Cross Section[M]. USA: SciTech Publishing, 2004.
[8] Saville P. Review of Radar Absorbing Materials[R]. DTIC Document, 2005.
[9] 丁春峰, 续宗成, 张雅婷, 等. 电磁超材料吸收器在太赫兹波段的研究进展[J]. 枣庄学院学报, 2013, 30(5): 12-18.
Ding Chun-Feng, Xu Zong-Cheng, Zhang Ya-Ting et al. Research progress of electromagnetic metamaterial absorber in THz frequencies[J]. Journal of Zaozhuang University, 2013, 30(5): 12-18.
[10] Smith D R, Vier D C, Koschny T, et al. Electromagnetic parameter retrieval from inhomogeneous metamaterials[J]. Physical Review E, 2005, 71(3): 036617.
[11] 陈菲, 曹卫平, 张静媛. 双频窄带超材料吸波体的设计[J]. 桂林电子科技大学学报, 2014, 34(3): 180-183.
Chen Fei, Cao Wei-ping, Zhang Jing-yuan. Design of dual narrow-bands metamaterial absorber[J]. Journal of Guilin University of Electronic Technology, 2014, 34(3): 180-183.
[12] Lee Yun-Shik. Principles of terahertz science and technology[M]. NY: Springer, 2008.
[13] Xie L, Yao Y, Ying Y. The application of terahertz spectroscopy to protein detection: a review[J]. Applied Spectroscopy Reviews, 2014, 49(6): 448-461.
[14] 魏华. 太赫兹探测技术发展与展望[J]. 红外技术, 2010, 32(4): 231- 234.
Wei Hua. The Prospects for THz detection techniques development[J]. Infrared Technology, 2010, 32(4): 231-234.
[15] 王华泽, 吴晗平, 吕照顺, 等. 太赫兹成像系统分析及其相关技术研究[J]. 红外技术, 2013, 35(7): 391-397.
Wang Hua-ze, Wu Han-ping, Lv Zhao-shun et al. Research on THz imaging system and its related technologies[J]. Infrared Technology, 2013, 35(7): 391-397.
[16] Tao H, Landy N I, Bingham C M, et al. A metamaterial absorber for the terahertz regime: Design, fabrication and characterization[J]. Optics Express, 2008, 16(10): 7181-7188.
[17] Tao H, Bingham C M, Strikwerda A C, et al. Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization[J]. Physical Review B, 2008, 78(24): 241103.
[18] Li Jiu Sheng. High absorption terahertz-wave absorber consisting of dual-C metamaterial structure[J]. Microwave and Optical Technology Letters, 2013, 55(5): 1185-1189.
[19] Li Jiu Sheng. Terahertz-wave absorber based on metamaterial[J]. Microwave and Optical Technology Letters, 2013, 55(4): 793-796.
[20] Alves F, Kearney B, Grbovic D, et al. Strong terahertz absorption using SiO2/Al based metamaterial structures[J]. Applied Physics Letters, 2012, 100(11): 111104.
[21] Wen Q Y, Zhang H W, Xie Y S, et al. Dual band terahertz metamaterial absorber: Design, fabrication, and characterization[J]. Applied Physics Letters, 2009, 95(24): 241111.
[22] Ma Y, Chen Q, Grant J, et al. A terahertz polarization insensitive dual band metamaterial absorber[J]. Optics Letters, 2011, 36(6): 945-947.
[23] Zhi C, Ya-Xin Z. Planar terahertz metamaterial with three-resonant frequencies[J]. Chinese Physics B, 2013, 22(6): 067802.
[24] Chao G, Shao-Bo Q, Zhi-Bin P, et al. Multiband terahertz metamaterial absorber[J]. Chinese Physics B, 2011, 20(1): 017801.
[25] Xu Z C, Gao R M, Ding C F, et al. Multiband metamaterial absorber at terahertz frequencies[J]. Chinese Physics Letters, 2014, 31(5): 054205.
[26] Peng X Y, Wang B, Lai S, et al. Ultrathin multi-band planar metamaterial absorber based on standing wave resonances[J]. Optics Express, 2012, 20(25): 27756-27765.
[27] Gu C, Qu S, Pei Z, et al. A wide-band, polarization-insensitive and wide-angle terahertz metamaterial absorber[J]. Progress In Electromagnetics Research Letters, 2010, 17: 171-179.
[28] Zhang X, Gu J, Cao W, et al. Bilayer-fish-scale ultrabroad terahertz bandpass filter[J]. Optics Letters, 2012, 37(5): 906-908.
[29] Huang Li, Chowdhury D R, Ramani S, et al. Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band[J]. Optics Letters, 2012, 37(2): 154-156.
[30] Wang G D, Liu M H, Hu X W, et al. Broadband and ultra-thin terahertz metamaterial absorber based on multi-circular patches[J]. The European Physical Journal B, 2013, 86(7): 1-9.
[31] Miyamaru F, Saito Y, Takeda M W, et al. Terahertz electric response of fractal metamaterial structures[J]. Physical Review B, 2008, 77(4): 045124.
[32] 杨娴, 张建民. 基于分形结构的太赫兹超材料吸波体[J]. 陕西师范大学学报: 自然科学版, 2013, 41(1): 32-35.
Yang Xian, Zhang Jian-min. Terahertz metamaterial absorber based on fractal structures[J]. Journal of Shanxi Normal University: Natural Science Edition, 2013, 41(1): 32-35.
[33] Grant J, Ma Y, Saha S, et al. Polarization insensitive, broadband terahertz metamaterial absorber[J]. Optics Letters, 2011, 36(17): 3476-3478.
[34] Pham V T, Park J W, Vu D L, et al. THz-metamaterial absorbers[J]. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2013, 4(1): 015001.
[35] Wang B X, Wang L L, Wang G Z, et al. A simple design of a broadband, polarization-insensitive, and low-conductivity alloy metamaterial absorber[J]. Applied Physics Express, 2014, 7(8): 082601.
[36] Shi C, Zang X F, Ji X B, et al. Ultra-broadband Terahertz Perfect Absorber Based on Multi-frequency Destructive Interference and Grating Diffraction[DB/OL]. arXiv preprint arXiv:1409.6103, 2014.
[37] Wang B X, Wang L L, Wang G Z, et al. Metamaterial-based low-conductivity alloy perfect absorber[J]. Journal of Lightwave Technology, 2014, 32(12): 2293-2298.
[38] Thongrattanasiri S, Koppens F H L, F Javier de Abajo G. Complete optical absorption in periodically patterned graphene[J]. Physical Review Letters, 2012, 108(4): 047401.
[39] Amin M, Farhat M, Ba?c? H. An ultra-broadband multilayered graphene absorber[J]. Optics Express, 2013, 21(24): 29938-29948.
[40] Xu Z C, Gao R M, Ding C F, et al. Photoexcited broadband blueshift tunable perfect terahertz metamaterial absorber[J]. Optical Materials, 2015, 42: 148-151.
[41] Xu Z, Gao R, Ding C, et al. Photoexited switchable metamaterial absorber at terahertz frequencies[J]. Optics Communications, 2015, 344: 125-128.
[42] Zheng W, Li W, Chang S. A thermally tunable terahertz metamaterial absorber[J]. Optoelectronics Letters, 2015, 11: 18-21.
[43] Naorem R, Dayal G, Ramakrishna S A, et al. Thermally switchable metamaterial absorber with a VO2 ground plane[J]. Optics Communications, 2015, 346: 154-157.
[44] 潘学聪, 姚泽瀚, 徐新龙, 等. 太赫兹波段超材料的制作, 设计及应用[J]. 中国光学, 2013, 6(3): 283-296.
Pan Xue-cong, Yao Ze-han, Xu Xin-long, et al. Fabrication, design and application of THz metamaterials[J]. Chinese Optics, 2013, 6(3): 283-296.

备注/Memo

备注/Memo:
收稿日期:2015-06-12;修订日期:2015-07-16.
作者简介:刘毅(1989-),女,河北衡水人,硕士研究生,主要从事太赫兹吸波薄膜研究。E-mail:liuyi@cigit.ac.cn。
通讯作者:彭晓昱,研究员,E-mail:xypeng@cigit.ac.cn。
基金项目:国家重点基础研究发展计划(973计划),编号:2015CB755401;中科院重庆绿色智能技术研究院创新研究基金,编号:Y52A010V10。
更新日期/Last Update: 2015-09-21