[1]赵建红,宋立媛,姬荣斌,等.石墨烯在光电探测领域的研究进展[J].红外技术,2014,36(8):609-616.[doi:10.11846/j.issn.1001_8891.201408002]
 ZHAO Jian-hong,SONG Li-yuan,JI Rong-bin,et al.Research Progress of Graphene in the Field of Photoelectric Detection[J].Infrared Technology,2014,36(8):609-616.[doi:10.11846/j.issn.1001_8891.201408002]
点击复制

石墨烯在光电探测领域的研究进展
分享到:

《红外技术》[ISSN:1001-8891/CN:CN 53-1053/TN]

卷:
36卷
期数:
2014年8期
页码:
609-616
栏目:
出版日期:
2014-08-20

文章信息/Info

Title:
Research Progress of Graphene in the Field of Photoelectric Detection
文章编号:
1001-8891(2014)08-0609-08
作者:
赵建红1宋立媛2姬荣斌2项金钟1唐利斌2
1.云南大学 物理科学技术学院,云南 昆明 650091;2.昆明物理研究所,云南 昆明 650223
Author(s):
ZHAO Jian-hong1SONG Li-yuan2JI Rong-bin2XIANG Jin-zhong1TANG Li-bin2
1.Department of Physical Science and Technology, Yunnan University, Kunming 650091, China;
2.Kunming Institute of Physics, Kunming 650223, China
关键词:
石墨烯能带结构迁移率红外探测器
Keywords:
grapheneband structuremobilityinfrared detector
分类号:
O471.5
DOI:
10.11846/j.issn.1001_8891.201408002
文献标志码:
A
摘要:
石墨烯是一种具有零带隙、室温下极高的电子迁移率、极低的电阻率以及高的透光性等许多独特性能的新型碳材料,关于石墨烯的相关研究引起了人们的广泛关注,其已成为凝聚态物理和材料科学的研究前沿。简要介绍了石墨烯的能带结构和性质,重点讨论了石墨烯在光电探测领域的应用及研究现状,指出了存在的不足并展望了未来的发展方向。
Abstract:
Graphene, a kind of advanced carbon material, has zero band gap, high electron mobility at room temperature, low electrical resistivity, high transmittance and many unique characteristics. Graphene related research works have widely aroused people’s attentions, which has become the frontier of condensed matter physics and material science. In this paper, the band structure and properties of graphene are briefly introduced, the application and research of graphene in photoelectric detection are mainly discussed, and the problems and prospect are pointed out.

参考文献/References:

[1] Kroto H W, Heath J R, O’Brien S C, et al. C60: buckminsterfullerene[J]. Nature, 1985, 6042(318): 162-163.
[2] Iijima S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 6348(354): 56-58.
[3] Novoselov K S, Geim A K, Morozov S, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 5696(306): 666-669.
[4] Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183-191.
[5] Geim A K. Nobel Lecture: Random walk to graphene[J]. Rev Mod Phys, 2011, 83(3): 851-862.
[6] Novoselov K S. Nobel lecture: graphene: materials in the flatland[J]. Rev Mod Phys, 2011, 83(3): 837-849.
[7] 代波, 邵晓萍, 马拥军, 等. 新型碳材料——石墨烯的研究进展[J]. 材料导报, 2010, 24(3): 17-21.
[8] 朱宏伟, 徐志平, 谢丹. 石墨烯: 结构、制备方法与性能表征[M]. 北京: 清华大学出版社, 2011.
[9] Wallace P. The band theory of graphite[J]. Phys Rev, 1947, 71(9): 622-634.
[10] Castro NetoA H, Peres N M R, Novoselov K S, et al. The electronic properties of graphene[J]. Rev Mod Phys, 2009, 81(1): 109-162.
[11] Slonczewski J, Weiss P. Band structure of graphite[J]. Phys Rev, 1958, 109(2): 272.
[12] Avouris P. Graphene: Electronic and photonic properties and devices[J]. NanoLett, 2010, 10(11): 4285-4294.
[13] Avouris P, Chen Z, Perebeinos V. Carbon-based electronics[J]. Nature Nanotechnology, 2007, 2(10): 605-615.
[14] 尹伟红, 韩勤, 杨晓红. 基于石墨烯的半导体光电器件研究进展[J]. 物理学报, 2012, 61(24): 593-604.
[15] Nair R R, Blake P, Grigorenko A N, et al. Fine structure constant defines visual transparency of graphene[J]. Science, 2008, 5881(320): 1308.
[16] Wang F, Zhang Y, Tian C, et al. Gate-variable optical transitions in graphene[J]. Science, 2008, 5873(320): 206-209.
[17] Bolotin K I, Sikes K J, Jiang Z, et al. Ultrahigh electron mobility in suspended graphene[J]. Solid State Commun, 2008, 146: 351-355.
[18] Dürkop T, Getty S, Cobas E, et al. Extraordinary mobility in semiconducting carbon nanotubes[J]. NanoLett, 2004, 4(1): 35-39.
[19] Sze S M, Irvin J C. Resistivity, mobility and impurity levels in GaAs, Ge, and Si at 300 K[J]. Solid State Electron, 1968, 11(6): 599-602.
[20] 黄桂荣, 陈建. 石墨烯的合成与应用[J]. 炭素技术, 2009, 28(01): 35-39.
[21] Kim K S, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes[J]. Nature, 2009, 7230(457): 706-710.
[22] 杨宇, 靳映霞, 王登科, 等. 半导体量子点集成有机发光二极管的光光转换器进展[J]. 红外技术, 2013, 35(10): 599-606.
[23] Xia F, Mueller T, Lin Y M, et al. Ultrafast grapheme photodetector[J]. Nature nanotechnology, 2009, 4(12): 839-843.
[24] Lemme M C, Echtermeyer T J, Baus M, et al. A graphene field-effect device[J]. IEEE Electron Device Lett, 2007, 28(4): 1-12.
[25] Xu X, Gabor N M, Alden J S, et al. Photo-thermoelectric effect at a graphene interface junction[J]. NanoLett, 2009, 10(2): 562-566.
[26] Song J C, Rudner M S, Marcus C M, et al. Hot carrier transport and photocurrent response in graphene[J]. NanoLett, 2011, 11(11): 4688-4692.
[27] Gabor N M, Song J C, Ma Q, et al. Hot carrier-assisted intrinsic photoresponse in graphene[J]. Science, 2011, 6056(334): 648-652.
[28] Sadowski M, Grynberg M, Witowski A, et al. Bolometric effect in the far-infrared response of a conducting layer on a semi-insulating substrate[J]. Physical Review B, 1999, 60(15): 10908.
[29] Grinberg A A, Luryi S. Theory of the photon-drag effect in a two-dimensional electron gas[J]. Physical Review B, 1988, 38(1): 87-96.
[30] Mueller T, Xia F, Avouris P. Graphene photodetectors for high-speed optical communications[J]. Nature Photonics, 2010, 4(5): 297-301.
[31] Mueller T, Xia F, Freitag M, et al. Role of contacts in graphene transistors: A scanning photocurrent study[J]. Physical Review B, 2009, 79(24): 245430.
[32] Xia F, Mueller T, Golizadeh-Mojarad R, et al. Photocurrent imaging and efficient photon detection in a graphene transistor[J]. NanoLett, 2009, 9(3): 1039-1044.
[33] Sun Z, Liu Z, Li J, et al. Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity[J]. Adv Mater, 2012, 24(43): 5878-5883.
[34] Rath A K, Bernechea M, Martinez L, et al. Solution-processed heterojunction solar cells based on p-type PbS quantum dots and n-type Bi2 S3 nanocrystals[J]. Adv Mater, 2011, 23(32): 3712-3717.
[35] Ahmadi E, Asgari A. Modeling of the infrared photodetector based on multi layer armchair grapheme nanoribbons[J]. J Appl Phys, 2013, 113(9): 093106.
[36] Kim J T, Yu Y J, Choi H, et al. Graphene-based plasmonic photodetector for photonic integrated circuits[J]. Opt Express, 2014, 22(1): 803-808.
[37] Pospischil A, Humer M, Furchi M M, et al. CMOS-compatible grapheme photodetector covering all optical communication bands[J]. Nature Photonics, 2013, 7(11): 892-896.
[38] Konstantatos G, Badioli M, Gaudreau L, et al. Hybrid graphene-quantum dot phototransistors with ultrahigh gain[J]. Nature nanotechnology, 2012, 7(6): 363-368.
[39] Tian H, Yang Y, Xie D, et al. Wafer-scale integration of graphene-based electronic, optoelectronic and electroacoustic devices[J]. Sci Rep, 2014, 3598(4): 1-9.
[40] Wang X, You H, Liu F, et al. Large-scale synthesis of few-layered graphene using CVD[J]. ChemVap Deposition, 2009, 15: 53-56.
[41] O’Brien M, Nichols B, ARL-TR-5047[R]. U.S.: Army Research Laboratory, 2010.
[42] Pan M, Girao E C, Jia X, et al. Topographic and spectroscopic characterization of electronic edge states in CVD grown graphenenanoribbons[J]. NanoLett, 2012, 12(4): 1928-1933.
[43] Bie Y Q, Zhou Y B, Liao Z M, et al. Site-specific transfer-printing of individual grapheme microscale patterns to arbitrary surfaces[J]. Adv Mater, 2011, 23(34): 3938-3943.
[44] Wu J, Xie L, Li Y, et al. Controlled chlorine plasma reaction for noninvasive graphene doping[J]. J Am ChemSoc, 2011, 133(49): 19668-19671.
[45] Wang X, Xu J-B, Xie W, et al. Quantitative analysis of graphene doping by organic molecular charge transfer[J]. The Journal of Physical Chemistry C, 2011, 115(15): 7596-7602.
[46] 吴慧, 马拥军, 朱东升, 等. 石墨烯基纳米红外吸波材料的制备及消光性能研究[J]. 红外技术, 2013, 35(4): 242-246.
[47] Zhang H, Fu Q, Cui Y, et al. Growth mechanism of graphene on Ru (0001) and O2 adsorption on the graphene/Ru (0001) surface[J]. The Journal of Physical Chemistry C, 2009, 113(19): 8296-8301.
[48] Kan E-j, Li Z, Yang J, et al. Half-metallicity in edge-modified zigzag grapheme nanoribbons[J]. J Am ChemSoc, 2008, 130(13): 4224-4225.
[49] Hod O, Barone V, Peralta J E, et al. Enhanced half-metallicity in edge-oxidized zigzag grapheme nanoribbons[J]. NanoLett, 2007, 7(8): 2295-2299.
[50] Giovannetti G, Khomyakov P, Brocks G, et al. Doping graphene with metal contacts[J]. Phys Rev Lett, 2008, 101(2): 1-4.

相似文献/References:

[1]常本康.大面积MCP-PMT K2CsSb光电阴极理论与测控技术研究[J].红外技术,2013,35(08):001.[doi:10.11846/j.issn.1001_8891.201308001]
 CHANG Ben-kang.Theory and Control Technology of Large Area MCP-PMT K2CsSb Photocathode[J].Infrared Technology,2013,35(8):001.[doi:10.11846/j.issn.1001_8891.201308001]
[2]李素芳,查文珂,方建军,等.石墨烯烟幕红外激光消光性能研究[J].红外技术,2010,32(6):366.
 LI Su-Fang,ZHA Wen-Ke,FANG Jian-Jun,et al.Extinction Characteristic of graphene Smoke to Infrared and Laser Wave[J].Infrared Technology,2010,32(8):366.
[3]周 全,汪岳峰,魏大鹏.基于蓝宝石基底转移石墨烯的中波红外透过光谱分析[J].红外技术,2014,36(9):695.[doi:10.11846/j.issn.1001_8891.201409003]
 ZHOU Quan,WANG Yue-feng,WEI Da-peng.Infrared Transmission Spectroscopy of Transferred Graphene on Sapphire[J].Infrared Technology,2014,36(8):695.[doi:10.11846/j.issn.1001_8891.201409003]
[4]常本康.负电子亲和势光电阴极50年史话[J].红外技术,2015,37(十):801.[doi:10.11846/j.issn.1001_8891.201510001]
 CHANG Ben-kang.Negative Electron Affinity Photocathode of Fifty Years[J].Infrared Technology,2015,37(8):801.[doi:10.11846/j.issn.1001_8891.201510001]
[5]唐利斌,姬荣斌,项金钟.石墨烯基材料的能带调控技术研究进展[J].红外技术,2015,37(十一):897.[doi:10.11846/j.issn.1001_8891.201511001]
 TANG Li-bin,JI Rong-bin,XIANG Jin-zhong.Progress in the Tuning Techniques of Energy Band for Graphene Based Materials[J].Infrared Technology,2015,37(8):897.[doi:10.11846/j.issn.1001_8891.201511001]
[6]刘清海,刘海锋,代晓东,等.石墨烯烟幕红外干扰性能研究[J].红外技术,2019,41(11):1071.[doi:10.11846/j.issn.1001_8891.201911012]
 LIU Qinghai,LIU Haifeng,DAI Xiaodong,et al.Infrared Interfering Performance of Graphene Smoke Screen[J].Infrared Technology,2019,41(8):1071.[doi:10.11846/j.issn.1001_8891.201911012]

备注/Memo

备注/Memo:
收稿日期:2014-02-27;修订日期:2014-05-01.
作者简介:赵建红(1988-),男,云南人,硕士研究生,主要从事纳米材料及光电器件研究。
通讯作者:项金钟(1963-),男,河南人,教授,博士,主要从事纳米材料的研究。
基金项目:云南省应用基础研究计划项目,编号:2012FA003。
更新日期/Last Update: 2014-08-25