SU Haifeng, ZHAO Yan, WU Zejun, CHENG Bo, LYU Linfei. Refined Infrared Object Detection Model for Power Equipment Based on Improved RetinaNet[J]. Infrared Technology , 2021, 43(11): 1104-1111.
Citation: SU Haifeng, ZHAO Yan, WU Zejun, CHENG Bo, LYU Linfei. Refined Infrared Object Detection Model for Power Equipment Based on Improved RetinaNet[J]. Infrared Technology , 2021, 43(11): 1104-1111.

Refined Infrared Object Detection Model for Power Equipment Based on Improved RetinaNet

More Information
  • Received Date: September 07, 2021
  • Revised Date: October 15, 2021
  • A large number of infrared images are generated during the operation of power equipment. When the power equipment in the infrared image is densely arranged, incline-angled, and has a large aspect ratio, the target detection network based on a horizontal rectangular frame can only provide the approximate position of the target, which is prone to overlap with the target detection area and introduce redundant background information, giving detection results that are not sufficiently accurate. To solve this problem, we propose to introduce a rotating rectangular box mechanism into the retina net target detection network and mosaic data enhancement technology at the network input, replacing the ReLU function in the original backbone network with a smoother mish activation function of gradient flow; the Pan module is added after the FPN module of the original model to further fuse image features. Finally, the data set is made by using the power-equipment infrared images collected on-site. The improved model is compared and evaluated with three target detection networks based on horizontal rectangular frame positioning: fast R-CNN, YOLOv3, and original RetinaNet. The experiments show that the improved model can detect the infrared targets of power equipment with inclination in dense scenes more accurately, and the detection accuracy of multi-category power equipment is higher than that of the above three models.
  • [1]
    谭宇璇, 樊绍胜. 基于图像增强与深度学习的变电设备红外热像识别方法[J/OL]. 中国电机工程学报, [2021-07-30]. http://kns.cnki.net/kcms/dtail/11.2107.tm.20210601.1000.002.html.

    TAN Yuxuan, FAN Shaosheng. Infrared thermal image recognition of substation equipment based on image enhancement and deep learn-ing[J/OL]. Proceedings of the CSEE, [2021-07-30]. http://kns.cnki.net/kcms/dtail/11.2107.tm.20210601.1000.002.html.
    [2]
    冯振新, 周东国, 江翼, 等. 基于改进MSER算法的电力设备红外故障区域提取方法[J]. 电力系统保护与控制, 2019, 47(5): 123-128. https://www.cnki.com.cn/Article/CJFDTOTAL-JDQW201905015.htm

    FENG Zhenxin, ZHOU Dongguo, JIANG Yi, et al. Fault region extraction using improved MSER algorithm with application to the electrical system[J]. Power System Protection and Control, 2019, 47(5): 123-128. https://www.cnki.com.cn/Article/CJFDTOTAL-JDQW201905015.htm
    [3]
    Jadin M S, Taib S. Recent progress in diagnosing the reliability of electrical equipment by using infrared thermography[J]. Infrared Physics & Technology, 2012, 55(4): 236-245. http://www.onacademic.com/detail/journal_1000035395435610_ae85.html
    [4]
    曾军, 王东杰, 范伟, 等. 基于红外热成像的电气设备组件识别研究[J]. 红外技术, 2021, 43(7): 679-687. http://hwjs.nvir.cn/article/id/58024112-8052-43d6-8a2d-dd2460dfa5e1

    ZENG Jun, WANG Dongjie, FAN Wei, et al. Research on electrical equipment component recognition based on infrared thermal imaging[J]. Infrared Technology, 2021, 43(7): 679-687. http://hwjs.nvir.cn/article/id/58024112-8052-43d6-8a2d-dd2460dfa5e1
    [5]
    朱惠玲, 牛哲文, 黄克灿, 等. 基于单阶段目标检测算法的变电设备红外图像目标识别及定位[J]. 电力自动化设备, 2021, 41(8): 217-224. https://www.cnki.com.cn/Article/CJFDTOTAL-DLZS202108032.htm

    ZHU Huiling, NIU Zhewen, HUANG Kecan, et al. Infrared image target recognition and location of substation equipment based on single-stage target detection algorithm[J]. Power Automation Equipment, 2021, 41(8): 217-224. https://www.cnki.com.cn/Article/CJFDTOTAL-DLZS202108032.htm
    [6]
    吴克河, 王敏鉴, 李渊博. 基于Mask R-CNN的电力设备红外图像分割技术研究[J]. 计算机与数字工程, 2020, 48(2): 417-422. DOI: 10.3969/j.issn.1672-9722.2020.02.029

    WU Kehe, WANG Minjian, LI Yuanbo. Research on infrared image segmentation technology of power equipment based on mask R-CNN[J]. Computer & Digital Engineering, 2020, 48(2): 417-422. DOI: 10.3969/j.issn.1672-9722.2020.02.029
    [7]
    刘云鹏, 裴少通, 武建华, 等. 基于深度学习的输变电设备异常发热点红外图片目标检测方法[J]. 南方电网技术, 2019, 13(2): 27-33. https://www.cnki.com.cn/Article/CJFDTOTAL-NFDW201902006.htm

    LIU Yunpeng, PEI Shaotong, WU Jianhua, et al. Deep learning based target detection method for abnormal hot spots infrared images of trans-mission and transformation equipment[J]. Southern Power System Technology, 2019, 13(2): 27-33. https://www.cnki.com.cn/Article/CJFDTOTAL-NFDW201902006.htm
    [8]
    REN Shaoqing, HE Kaiming, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]// Advances in Neural Information Processing Systems, Montreal, Canada, 2015: 91-99.
    [9]
    Redmon J, Farhadi A. YOLOv3: An incremental improvement[J/OL]. [2018-04-08]. https://arxiv.org/abs/1804.02767.
    [10]
    LIU W, Anguelov D, Erhan D, et al. SSD: single shot multibox detec-tor[C]// Proceedings of the European Conference on Computer Vision. Amsterdam, 2016: 21-37
    [11]
    李文璞, 谢可, 廖逍, 等. 基于Faster RCNN变电设备红外图像缺陷识别方法[J]. 南方电网技术, 2019, 13(12): 79-84. https://www.cnki.com.cn/Article/CJFDTOTAL-NFDW201912012.htm

    LI Wenpu, XIE Ke, LIAO Xiao, et al. Intelligent diagnosis method of infrared image for transformer equipment based on improved faster RCNN[J]. Southern Power System Technology, 2019, 13(12): 79-84. https://www.cnki.com.cn/Article/CJFDTOTAL-NFDW201912012.htm
    [12]
    王永平, 张红民, 彭闯, 等. 基于YOLO v3的高压开关设备异常发热点目标检测方法[J]. 红外技术, 2020, 42(10): 983-987. http://hwjs.nvir.cn/article/id/hwjs202010011

    WANG Yongping, ZHANG Hongmin, PENG Chuang, et al. The Target detection method for abnormal heating point of high-voltage switchgear based on YOLO v3[J]. Infrared Technology, 2020, 42(10): 983-987. http://hwjs.nvir.cn/article/id/hwjs202010011
    [13]
    梁杰, 李磊, 周红丽. 基于改进SSD的舰船目标精细化检测方法[J]. 导航定位与授时, 2019, 6(5): 43-51. https://www.cnki.com.cn/Article/CJFDTOTAL-DWSS201905009.htm

    LIANG Jie, LI Lei, ZHOU Hongli. A ship target refinement detection method based on improved SSD[J]. Navigation Positioning & Timing, 2019, 6(5): 43-51. https://www.cnki.com.cn/Article/CJFDTOTAL-DWSS201905009.htm
    [14]
    LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]// Proceedings of the IEEE International Conference on Computer Vision, 2017: 2999-3007.
    [15]
    Bochkovskiy A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[J/OL]. Computer Vision and Pattern Recognition, 2020, https://arxiv.org/abs/2004.10934.
    [16]
    Misra D. Mish: a self regularized non-monotonic neural activation func-tion[J/OL]. Computer Science, 2019, https://arxiv.org/abs/1908.08681.
    [17]
    LIU Shu, QI Lu, QIN Haifang, et al. Path aggregation network for instance segmentation[C]//IEEE Conference on Computer Vision and Pattern Recognition, 2018: 8759-8768.
    [18]
    LIN T Y, Dollár P, Girshick R, et al. Feature pyramid networks for object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125.
    [19]
    Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2014, 39(4): 640-651. http://www.open-open.com/misc/goto?guid=4959637963303133294
    [20]
    NAIR V, HINTON G E. Rectified linear units improve restricted boltz-mann machines[C]//Proceedings of the 27th International Conference on Machine Learning(ICML-10), 2010: 807-814.
    [21]
    WEN Long, GAO Liang, LI Xinyu. A new deep transfer learning based on sparse auto-encoder for fault diagnosis[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 49(1): 136-144. DOI: 10.1109/TSMC.2017.2754287
  • Cited by

    Periodical cited type(1)

    1. 王瑞瑞,黄天柱. 化工安全生产中红外气体检测技术运用分析. 中国石油和化工标准与质量. 2025(09): 47-49 .

    Other cited types(0)

Catalog

    Article views (271) PDF downloads (41) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return