Citation: | SU Haifeng, ZHAO Yan, WU Zejun, CHENG Bo, LYU Linfei. Refined Infrared Object Detection Model for Power Equipment Based on Improved RetinaNet[J]. Infrared Technology , 2021, 43(11): 1104-1111. |
[1] |
谭宇璇, 樊绍胜. 基于图像增强与深度学习的变电设备红外热像识别方法[J/OL]. 中国电机工程学报, [2021-07-30]. http://kns.cnki.net/kcms/dtail/11.2107.tm.20210601.1000.002.html.
TAN Yuxuan, FAN Shaosheng. Infrared thermal image recognition of substation equipment based on image enhancement and deep learn-ing[J/OL]. Proceedings of the CSEE, [2021-07-30]. http://kns.cnki.net/kcms/dtail/11.2107.tm.20210601.1000.002.html.
|
[2] |
冯振新, 周东国, 江翼, 等. 基于改进MSER算法的电力设备红外故障区域提取方法[J]. 电力系统保护与控制, 2019, 47(5): 123-128. https://www.cnki.com.cn/Article/CJFDTOTAL-JDQW201905015.htm
FENG Zhenxin, ZHOU Dongguo, JIANG Yi, et al. Fault region extraction using improved MSER algorithm with application to the electrical system[J]. Power System Protection and Control, 2019, 47(5): 123-128. https://www.cnki.com.cn/Article/CJFDTOTAL-JDQW201905015.htm
|
[3] |
Jadin M S, Taib S. Recent progress in diagnosing the reliability of electrical equipment by using infrared thermography[J]. Infrared Physics & Technology, 2012, 55(4): 236-245. http://www.onacademic.com/detail/journal_1000035395435610_ae85.html
|
[4] |
曾军, 王东杰, 范伟, 等. 基于红外热成像的电气设备组件识别研究[J]. 红外技术, 2021, 43(7): 679-687. http://hwjs.nvir.cn/article/id/58024112-8052-43d6-8a2d-dd2460dfa5e1
ZENG Jun, WANG Dongjie, FAN Wei, et al. Research on electrical equipment component recognition based on infrared thermal imaging[J]. Infrared Technology, 2021, 43(7): 679-687. http://hwjs.nvir.cn/article/id/58024112-8052-43d6-8a2d-dd2460dfa5e1
|
[5] |
朱惠玲, 牛哲文, 黄克灿, 等. 基于单阶段目标检测算法的变电设备红外图像目标识别及定位[J]. 电力自动化设备, 2021, 41(8): 217-224. https://www.cnki.com.cn/Article/CJFDTOTAL-DLZS202108032.htm
ZHU Huiling, NIU Zhewen, HUANG Kecan, et al. Infrared image target recognition and location of substation equipment based on single-stage target detection algorithm[J]. Power Automation Equipment, 2021, 41(8): 217-224. https://www.cnki.com.cn/Article/CJFDTOTAL-DLZS202108032.htm
|
[6] |
吴克河, 王敏鉴, 李渊博. 基于Mask R-CNN的电力设备红外图像分割技术研究[J]. 计算机与数字工程, 2020, 48(2): 417-422. DOI: 10.3969/j.issn.1672-9722.2020.02.029
WU Kehe, WANG Minjian, LI Yuanbo. Research on infrared image segmentation technology of power equipment based on mask R-CNN[J]. Computer & Digital Engineering, 2020, 48(2): 417-422. DOI: 10.3969/j.issn.1672-9722.2020.02.029
|
[7] |
刘云鹏, 裴少通, 武建华, 等. 基于深度学习的输变电设备异常发热点红外图片目标检测方法[J]. 南方电网技术, 2019, 13(2): 27-33. https://www.cnki.com.cn/Article/CJFDTOTAL-NFDW201902006.htm
LIU Yunpeng, PEI Shaotong, WU Jianhua, et al. Deep learning based target detection method for abnormal hot spots infrared images of trans-mission and transformation equipment[J]. Southern Power System Technology, 2019, 13(2): 27-33. https://www.cnki.com.cn/Article/CJFDTOTAL-NFDW201902006.htm
|
[8] |
REN Shaoqing, HE Kaiming, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]// Advances in Neural Information Processing Systems, Montreal, Canada, 2015: 91-99.
|
[9] |
Redmon J, Farhadi A. YOLOv3: An incremental improvement[J/OL]. [2018-04-08]. https://arxiv.org/abs/1804.02767.
|
[10] |
LIU W, Anguelov D, Erhan D, et al. SSD: single shot multibox detec-tor[C]// Proceedings of the European Conference on Computer Vision. Amsterdam, 2016: 21-37
|
[11] |
李文璞, 谢可, 廖逍, 等. 基于Faster RCNN变电设备红外图像缺陷识别方法[J]. 南方电网技术, 2019, 13(12): 79-84. https://www.cnki.com.cn/Article/CJFDTOTAL-NFDW201912012.htm
LI Wenpu, XIE Ke, LIAO Xiao, et al. Intelligent diagnosis method of infrared image for transformer equipment based on improved faster RCNN[J]. Southern Power System Technology, 2019, 13(12): 79-84. https://www.cnki.com.cn/Article/CJFDTOTAL-NFDW201912012.htm
|
[12] |
王永平, 张红民, 彭闯, 等. 基于YOLO v3的高压开关设备异常发热点目标检测方法[J]. 红外技术, 2020, 42(10): 983-987. http://hwjs.nvir.cn/article/id/hwjs202010011
WANG Yongping, ZHANG Hongmin, PENG Chuang, et al. The Target detection method for abnormal heating point of high-voltage switchgear based on YOLO v3[J]. Infrared Technology, 2020, 42(10): 983-987. http://hwjs.nvir.cn/article/id/hwjs202010011
|
[13] |
梁杰, 李磊, 周红丽. 基于改进SSD的舰船目标精细化检测方法[J]. 导航定位与授时, 2019, 6(5): 43-51. https://www.cnki.com.cn/Article/CJFDTOTAL-DWSS201905009.htm
LIANG Jie, LI Lei, ZHOU Hongli. A ship target refinement detection method based on improved SSD[J]. Navigation Positioning & Timing, 2019, 6(5): 43-51. https://www.cnki.com.cn/Article/CJFDTOTAL-DWSS201905009.htm
|
[14] |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]// Proceedings of the IEEE International Conference on Computer Vision, 2017: 2999-3007.
|
[15] |
Bochkovskiy A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[J/OL]. Computer Vision and Pattern Recognition, 2020, https://arxiv.org/abs/2004.10934.
|
[16] |
Misra D. Mish: a self regularized non-monotonic neural activation func-tion[J/OL]. Computer Science, 2019, https://arxiv.org/abs/1908.08681.
|
[17] |
LIU Shu, QI Lu, QIN Haifang, et al. Path aggregation network for instance segmentation[C]//IEEE Conference on Computer Vision and Pattern Recognition, 2018: 8759-8768.
|
[18] |
LIN T Y, Dollár P, Girshick R, et al. Feature pyramid networks for object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125.
|
[19] |
Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2014, 39(4): 640-651. http://www.open-open.com/misc/goto?guid=4959637963303133294
|
[20] |
NAIR V, HINTON G E. Rectified linear units improve restricted boltz-mann machines[C]//Proceedings of the 27th International Conference on Machine Learning(ICML-10), 2010: 807-814.
|
[21] |
WEN Long, GAO Liang, LI Xinyu. A new deep transfer learning based on sparse auto-encoder for fault diagnosis[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 49(1): 136-144. DOI: 10.1109/TSMC.2017.2754287
|
1. |
王瑞瑞,黄天柱. 化工安全生产中红外气体检测技术运用分析. 中国石油和化工标准与质量. 2025(09): 47-49 .
![]() |