〈综述与评论〉

红外焦平面探测器数字读出电路研究

刘传明,姚立斌

(昆明物理研究所,云南 昆明 650223)

摘要:读出电路是红外焦平面探测器组件的重要组成部分,其性能对探测器乃至整个红外成像系统的 性能有重大影响。随着硅 CMOS 工艺的发展,数字化读出电路以及读出电路片上数字信号处理等功能 得以实现,能够大幅度提高红外焦平面探测器的性能。以红外焦平面探测器对读出电路的要求入手, 分析了读出电路各性能参数对红外焦平面探测器性能的影响,介绍了读出电路的数字化技术及各种实 现方式以及数字积分技术。CMOS 技术的发展使得数字积分技术在红外焦平面探测器读出电路中得以 实现,有效解决了读出电路的电荷存储容量不足的问题,极大地提高了探测器性能。 关键词: 红外焦平面探测器读出电路;模拟-数字转换器;数字读出;数字积分 中图分类号: TN216 文献标识码: A 文章编号: 1001-8891(2012)03-0125-09

Study on Digital Readout Circuit for Infrared FPA Detectors

LIU Chuan-ming, YAO Li-bin

(Kunming Institute of Physics, Kunming Yunnan 650223, China)

Abstract: The readout integrated circuit (ROIC) is an important component for an infrared focal plane array detector, so its performance will largely affect the performance of the detector or even the whole imaging system. With the development of the silicon CMOS technologies, it is possible to digitize the signal and incorporate digital signal processing inside the ROIC. As a result, the performance of the IRFPA will be improved greatly. Based on the requirements of the IRFPA to ROIC, the influences of the ROIC to the IRFPA performance are analyzed. The digital ROIC techniques and digital integration techniques are introduced. The development of the CMOS technologies enables the digital integration technique, solving the problem of limited charge storage capacity and improving the IRFPA performance greatly.

Key Words: infrared focal plane array detector readout circuit, analog to digital convertor, digital readout, digital integration

0 引言

红外成像系统广泛应用于军事及民用各领域。在 红外成像领域,凝视焦平面面阵型探测器已经取代扫 描型探测器成为红外成像应用的主流。与可见光成像 系统相比较,红外成像系统的主要特点有两个:信号 的大动态范围及较差的探测器均匀性。与之相关的红 外焦平面探测器读出电路必须能够处理探测器信号 的较高的动态范围及非均匀性问题,这对读出电路的 性能和功能提出了较高的要求。

本文详细分析了读出电路各性能参数对红外焦 平面探测器性能的影响,提出了红外焦平面探测器对 读出电路的要求,比较了几种数字读出电路的不同实 现方式以及数字积分技术对提高探测器性能的意义。

1 红外焦平面探测器读出电路

读出电路作为联接探测器及后续图像处理电路的桥梁,其作用主要有两点:将探测器的光电信号

收稿日期: 2012-03-09

作者简介:刘传明(1977-),男,四川自贡人,博士研究生,主要研究方向:混合集成电路设计.

基金项目: 云南省高层次科技人才培引工程资助项目(编号: 2011CI136)。

按照一定顺序读出及提供探测器偏置。读出电路直 接与探测器相联接,处在信号处理链路的最前端, 对红外成像整机的性能有巨大的影响。本文以常见 的光伏型探测器为例,阐述读出电路各部分的功能 及对探测器性能的影响。

图1所示为红外探测器及读出电路的接口关系 图。读出电路由硅 CMOS 工艺制备,通过倒装焊工 艺与探测器实现电学联接。读出电路从功能上可以 分为两部分:读出单元电路及多路传输器(MUX)。 读出单元电路直接与探测器连接,实现提取探测器 信号及提供探测器偏置的功能。而多路传输器将来 自成百上千的探测元信号依次传输到读出电路的单 个输出端,实现电学扫描。最常用的多路传输器形 式有:电荷耦合器件(CCD),它利用一系列连续 的转移势阱,将电荷传输到浮置栅或扩散区;MOS 场效应晶体管(MOSFET)开关,利用一系列顺序 接通的 MOSFET 开关,将探测元信号连接至总线。

图 1 红外探测器及读出电路框图

Fig.1 Block diagram of the detector and the readout circuit

如图 1 所示,从探测器端来看,读出单元电路 可以等效为一个戴维宁等效电路,等效为一个开路 电压 V_{DET} 及输入阻抗 R_{in}。因为探测器工作帧频一 般较低,约为几十赫兹,而电路的极点频率大约在 兆赫兹量级,远远高于帧频,因而在计算时可以用 输入电阻来取代输入阻抗作为主要参数。开路电压 也就是提供给探测器的偏置电压 V_{DET}。开路电压 也就是提供给探测器的偏置电压 V_{DET}。开路电压 V_{DET} 及输入电阻 R_{in} 是影响读出单元电路性能的关 键。读出单元电路关键的性能参数有偏置电压的稳 定性及非均匀性、注入效率、电荷存储容量、噪声 等^[1]。下面以图 2 所示典型的直接注入型(DI: Direct Injection)读出单元电路为例来阐述各参数的意义 及对探测器性能的影响。

在直接注入型读出单元电路中,探测器输出的 光电流通过注入晶体管 M₁ 注入到积分电容 C_{int} 中 进行积分,积分完毕后输出 v_{out} 信号给多路传输器, 并通过复位晶体管将积分电容中电荷泻放,准备开 始下一次积分过程。

1.1 偏置电压的稳定性及非均匀性

对于光伏型探测器来说,偏置电压对探测器的

性能影响是巨大的。探测器的暗电流、响应率、噪 声性能都受偏置电压的影响。稳定的偏置电压以及 不同探测元之间偏置电压的一致性是保证探测器工 作性能的必要条件。图3所示为光伏探测器典型的

光电流 I_P及内电阻 R_D随偏置电压变化曲线^[2]。从图中 可以看出,即使在相同的光照条件下,在不同的偏置 电压 V_{DET}下,探测器的光电流和内电阻均有较大的改 变。此外,探测器偏置电压也会直接影响暗电流的大 小。过大的探测器暗电流会给后续信号处理带来困 难,对于普遍应用的直接注入型读出电路结构来说, 容易导致积分电容过早饱和,限制了积分时间的最大 调整范围,影响了探测器输出信号的信噪比。同时, 较大的暗电流需要处理电路有更大的动态范围。

如图 4 所示为一幅未经非均匀校正处理前的原始 热像图像数据的灰度信号直方图,从图中可以看出, 真实景物信号数据只占整个信号动态范围的很小的 一部分,探测器输出信号的大部分动态范围被探测器 的暗电流、背景信号及探测器非均匀性所占据。由此 可见暗电流对处理电路动态范围的影响是巨大的。由 于制造工艺等原因,相对于中波探测器来说,碲镉汞 长波探测器的暗电流更大,使得这一问题显得尤为突 出。

理想的偏置电压选择策略应该尽量能够让探测器的暗电流最小,如图3中的零偏置电压位置。但是探测器处于零偏置附近,偏置电压对探测器性能的影响也是最大的。从图3看出,在零偏置电压附近,探测器的 I-V 及 R_D-V 曲线是较陡峭的,即使偏置电压的数毫伏的变化会带来探测器性能的较大变化。所以偏置电压的稳定性及均匀性显得尤为重要。为所有探测单元提供稳定的、均匀一致的偏置电压是对读出单元电路的一个重要的要求。

图 4 一幅未经非均匀校正热像的灰度直方图

Fig.4 Grey-scale histogram of a raw thermal image

偏置电压的稳定性表征了读出单元电路提供给 探测器的偏置电压的稳定程度。由电路原理可知,任 何电路参量都会由于环境温度、工艺参数及电源电压 的变化而改变。读出单元电路提供的探测器偏置电压 VDET 也会由于环境温度、工艺参数及电源电压的变化 而改变,进而造成探测器的性能漂移。探测器偏置电 压 VDET 的产生必须考虑其稳定性,最好是由两个相同 的电路参数的差值来产生,这样可以将环境温度、工 艺参数及电源电压的影响降到最低。在图 2 所示的直 接注入型读出单元电路中,探测器偏置电压 VDET 由公 式(1)给出:

$$V_{\text{DET}} = V_{\text{B}} - V_{\text{GS}} - V_{\text{D}}$$
$$= V_{\text{B}} - V_{\text{D}} + V_{\text{th}} + V$$
(1)

式中: V_{th} 为晶体管 M₁ 的阈值电压, V_{OD} 为晶体管 M₁ 的过驱动电压。上式中的 V_B及 V_D 可以由精密电压源 提供,具有较高的稳定性。晶体管的阈值电压随温度 变化而变化,而晶体管的过驱动电压是随晶体管的漏 极电流,也即探测器输出电流改变的。这样,探测器 的偏置电压在不同的温度条件下及不同的探测器输 出电流情况下会改变,不能保证探测器偏置的稳定 性,带来探测器性能的漂移。

偏置电压的非均匀性表征了各个读出单元电路 提供给各个探测器的偏置电压的均匀程度。由于 CMOS 工艺存在的参数离散性,读出单元电路提供 给各个探测器单元的偏置电压也存在离散,造成探测 器性能的非均匀性。在 CMOS 工艺中,器件参数 *P* 的失配程度可以用参数 *P* 差值的均方差表示,由式(2) 给出^[3]:

$$\sigma^2(\Delta P) = \frac{k_1^2}{W \cdot L} + k_2^2 D_x^2 \qquad (2)$$

式中: k₁及 k₂是和工艺相关的系数, W 是器件的宽度, L 是器件的长度, D_x是器件之间的距离。在图 2 所示 的直接注入型读出单元电路中,每个晶体管的阈值电 压及过驱动电压都存在离散,由式(2)得出,加大器件 的尺寸可以减小阈值电压及过驱动电压的离散度,也 即可以提高偏置电压的均匀性,有利于提高探测器性 能的均匀性。

1.2 注入效率

图 5 所示为光伏探测器的等效电路图,探测器可 以等效为电流源、分布电容及内电阻。由于探测器自 身的内电阻 *R*_D的影响,探测器产生的光电流会被 *R*_D 分流,只有部分光电流注入到读出单元电路。探测器 的注入效率定义为注入到读出单元电路的电流 *i*_r 与探 测器输出的总光电流 *i*_p之比,由下式给出:

$$\eta_i = \frac{i_r}{i_p} = \frac{R_{\rm D}}{R_{\rm D} + R_{\rm in}} \tag{3}$$

式中: R_D是探测器的内电阻, R_{in}是读出单元电

Fig. 5 Equivalent circuit of an infrared photovoltaic detector 路的输入电阻。图 6 给出了在不同的输入电阻的情况下,注入效率与探测器内阻 *R*_D的关系。

从图 6 中可见,读出单元电路的输入电阻 *R*_{in} 必须远低于探测器内阻,才能保证有较高的注入效率^[4]。 由于碲镉汞探测器工艺的复杂性,探测器内电阻 *R*_D 具有较大的离散性,特别是长波探测器,*R*_D较难提高。 因而从降低读出单元电路输入电阻上着手来提高注 入效率是一个较优化的方案。如果能保证读出单元电 路的输入电阻 *R*_{in}低于 100 Ω,则在大部分情况下都 能够保证注入效率在 90%以上。

图 6 不同输入电阻情况下注入效率与探测器 RD 的关系

Fig.6 Relationship between the injection efficiency and the detector R_D with different input resistance of the readout circuit

在图 2 所示的直接注入型读出单元电路中,探测器直接接入注入晶体管的源级,其输入电阻由式(4)给出:

$$R_{\rm in} = \frac{1}{g_{\rm ml}} \tag{4}$$

式中: g_{ml}为与注入晶体管的跨导。由于光电流较小, 注入晶体管一般工作在亚阈值区,此时晶体管的跨导 由式(5)决定:

$$R_{\rm in} = \frac{1}{g_{\rm m1}} = \frac{n \cdot V_{\rm T}}{I_D} = \frac{n \cdot k \cdot T}{q \cdot I_D}$$
(5)

式中:n为表征晶体管反型程度的一个常数,值在1~ 2之间;k为玻尔兹曼常数;T为绝对温度;q为电子 电荷;I_D为晶体管漏极电流,也即探测器的输出电流。 从公式(5)可知,在探测器信号很小时,也即输出电流 很小时,读出单元电路的输入电阻会升高,导致注入 效率下降,影响探测器的性能发挥。

为了提高读出单元电路的偏置稳定性及注入效率,一些新型的读出单元电路陆续被提出。在直接注入电路的基础上,缓冲直接注入(BDI: Buffered Direct Injection)^[5]利用增益为 A₀的放大器为注入晶体管提供负反馈,将注入电阻降低了 A₀倍,提高了注入效率,同时探测器偏置电压也由放大器稳定,但电路中需要一个放大器,功耗及芯片面积均增加。栅极调制注入(GMI: Gate Modulation Input)^[6]利用二极管接法的晶体管与探测器接口,输入电阻及偏置稳定性与直接注入电路相似,但 GMI 电路可以提供大于一的电流增益。电容跨导放大器(CTIA: Capacitive Transimpedance Amplifier)读出单元电路^[7]。具有较低的输入电阻,同时偏置稳定性也由放大器保证,但电路中需要一个放大器,增加了功耗及芯片面积。缓冲栅极调制注入

(BGMI: Buffered Gate Modulation Input)读出单元电 路^[8]是在 GMI 的基础上加入放大器提供负反馈,具有 较高的注入效率及偏置稳定性,同时还可以提供电流 增益,但电路也需要放大器。电流镜注入(CMI: Current Mirror Input)读出单元电路^[4,9]利用互相耦合的两个电 流镜来提取探测器光电流,具有较低的输入电阻,同 时探测器偏置稳定性也较好,可以提供大于1的电流 增益,同时电路中不需要放大器,实现方案的芯片面 积比其他改进方案都小,是一种性能较为均衡的读出 单元电路。

1.3 积分电路电荷存储容量

凝视型面阵探测器与扫描型单元探测器相比最 大的优势是凝视探测器的探测单元具有较长的光电 流积分时间,能大大提高探测器输出信号的幅度及信 噪比。光电流积分过程中,光电流信号强度与积分时 间长度是线性关系叠加,而噪声与积分时间的关系仅 仅是均方根关系叠加,因而获得信噪比的提升。

光伏探测器的噪声通常分为散弹噪声及热噪声 两部分,散弹噪声又称散粒噪声,其平均功率由下式 给出:

$$\overline{i_{\rm s}^2} = 2qI_{\rm p}\Delta f \approx \frac{q \cdot I_{\rm p}}{T_{\rm int}}$$
(6)

热噪声的平均功率由下式给出:

$$\overline{i_{t}^{2}} = \frac{4kT\Delta f}{R_{\rm D}} \approx \frac{2kT}{R_{\rm D}T_{\rm int}}$$
(7)

式中: T_{int} 为积分时间; Δf 为噪声带宽,约为 $2T_{int}$ 的 倒数; R_D 是探测器的内电阻; k 为玻尔兹曼常数; T为绝对温度; q 为电子电荷; I_p 为探测器输出的光电 流。经过光电流积分过程后,电流在积分电容 C_{int} 上 积分,读出单元电路输出的信号电压 v_p 为:

$$v_{\rm p} = \frac{I_{\rm p} \cdot T_{\rm int}}{C_{\rm int}} \tag{8}$$

总噪声电压 vn为:

$$v_{\rm n} = \frac{\sqrt{i_{\rm t}^2 + i_{\rm s}^2} \cdot T_{\rm int}}{C_{\rm int}} \tag{9}$$

信噪比由公式(10)给出:

$$SNR = \frac{v_{p}}{\overline{v}_{n}} = \frac{I_{p}\sqrt{T_{int}}}{\sqrt{q \cdot I_{p} + \frac{2kT}{R_{D}}}}$$
(10)

从公式(10)看出,读出单元电路输出信号的信噪 比与积分时间的平方根是成正比的。增加积分时间可 以提高输出信号的信噪比。理论上凝视型探测器的光 电流积分时间最大可以等于系统的单帧成帧时间。但 由于读出电路电荷存储容量的限制,光电流积分时间 远小于系统的成帧时间^[10]。

假设积分电容的容量为 *C*_{int},则电荷存储容量由 下式决定:

$$Q_{\max} = C_{int} \bullet v_{omax} = I_p \bullet T_{int_max}$$
(11)

式中: v_{omax} 为读出电路最大输出电压幅度,最大为电源电压值; I_p 为探测器输出的平均电流; T_{int} 为积分时间。由于在凝视型探测器读出电路中,积分电容是集成于像元单元电路中的,其电路面积受到像元尺寸的限制,因而能够获得的积分电容的容量是非常有限的,以目前常用的 CMOS 工艺来说,积分电容能够做到1pF~2pF 左右。假设积分电容容量为1pF,电源电压为 5 V,则读出单元电路的电荷存储容量最大为5 pC,约合 3.1×10^7 个电子电荷。假设探测器输出的平均电流为 1 nA,则最长的积分时间只能达到 5 ms,远小于通常 20 ms 的帧时间。对于长波探测器来说,较大的探测器暗电流及较高的背景辐射强度使得探测器的积分时间进一步减小,通常小于 1 ms。

由上述分析可知,由于读出电路电荷存储容量的 限制,积分时间无法增长,影响了探测器性能的进一 步提高。随着技术发展,探测器像元数的进一步增加, 像元尺寸不断缩小,在像元内集成的积分电容容量不 断减小,导致读出电路电荷存储容量限制成为影响红 外探测器性能的最主要因素之一。现代模拟读出电路 的电荷存储能力大约在 10⁶~10⁷ 个电子电荷之间。这 样的电荷存储容量对于中波探测器来说可以支持到 ms级的积分时间,但对于长波探测器,较高的信号电 流使得需要 10⁹ 个电子电荷的电荷存储容量来实现 ms 级的光电信号积分。

综上所述,读出单元电路的性能对提高探测器整 体性能起到至关重要的作用。高性能红外焦平面探测 器对读出电路的要求有:高注入效率、高动态范围、 高电荷存储能力、低噪声、低功耗及较小的硅片面积。

2 读出电路数字化

一直以来,在读出电路片内将光电信号数字化是 探测器读出电路的发展方向^[11]。与模拟读出电路相 比,数字化读出电路具有多项优势,如降低外界对模 拟信号传输的干扰,降低红外成像系统复杂度及成本 等。随着 CMOS 技术的发展,在读出电路片内、乃至 像元内集成模拟-数字转换器(ADC)成为可能。

与模拟读出电路相比,数字化读出电路将 ADC 集成到读出电路片内,不可避免地带来功耗的上升,

对制冷型探测器来说提高了对制冷功率的要求,因而 对 ADC 功耗的要求成为首要考虑。其次,要在读出 电路片内集成 ADC,由于像元尺寸等因素的限制,对 ADC 芯片面积也提出要求^[12]。由于红外信号的高动态 特性,对 ADC 的动态范围要求是 85 dB 以上,折合 ADC 的分辨率为 14~16 bit。ADC 的速度要求由读 出电路结构确定^[13]。

图 7 给出了不同结构的 CMOS ADC 的速度及分 辨率的关系,适合数字化红外探测器信号的 ADC 结 构有流水线 ADC (Pipelined ADC)、Sigma-Delta ADC 及积分型 ADC (Integrating ADC) 三种。下面依照不 同的读出电路结构介绍红外焦平面探测器数字化读 出电路。

Fig.7 Speed and resolution relationship of different ADCs

2.1 片级 ADC 结构数字读出电路

片级 ADC 结构的数字读出电路结构见图 8。片级 ADC 结构的数字读出电路将 ADC 集成到读出电路, 读出单元电路及多路器均工作在模拟域, 直接输出数 字信号。

图 8 片级 ADC 结构数字读出电路框图

片级 ADC 结构的读出电路只需要一个或者少量

几个 ADC 对输出的信号进行数字化,对 ADC 的速度 要求由式(12)给出:

$$f_{\rm s} = \frac{M \cdot N \cdot f_0}{m} \tag{12}$$

式中: *f*_s为 ADC 的采样频率; *M* 及 *N* 分别为探测器 像元的列数及行数; *f*₀为探测器输出的帧频; *n* 为 ADC 的个数, 一般不超过 4 个。对 ADC 分辨率的要求是 由探测器输出信号的动态范围决定, 对于红外探测器 来说为 14~16 bit。整个 ADC 结构处在像元区域之外, 对 ADC 的版图尺寸无限制, 功耗也无较严格的限制。 片级 ADC 的采样频率大都在几十兆赫兹, 分辨率 为 14~16 bit, 功耗在 100 mW 内, 通常流水线结 构的 ADC 适合作为片级 ADC 方案。

由于在片级 ADC 结构的数字读出电路中, ADC 处于信号处理的后端, 光电信号积分及多路传输均与 传统的模拟读出电路相同, 积分电容电荷存储能力依 然受到像元面积的限制, 读出电路性能提升不明显。 片级 ADC 结构的数字读出电路的性能与传统的模拟 读出电路相比无较大的改进。一般片级 ADC 的应用 目的主要是满足红外系统的低成本化需求。

2.2 列级 ADC 结构数字读出电路

列级 ADC 结构的数字读出电路结构见图 9。探测器的每一列像元由一个 ADC 来进行数字化。读出单元电路工作在模拟域,列多路传输器工作在模拟域,行多路传输器工作在数字域。列级 ADC 结构的读出电路需要 M 个 ADC 对输出的信号进行数字化,对ADC 的速度要求由下式给出:

$$f_{\rm s} = N f_0 \tag{13}$$

式中: f_s 为 ADC 的采样频率;N为探测器像元的行数; f_0 为探测器输出的帧频。

对 ADC 分辨率的要求一样是由探测器输出信号的动态范围决定。虽然 ADC 阵列处在像元区域之外, 但由于在探测器面阵的宽度范围内必须集成 *M* 个 ADC,对 ADC 的版图尺寸在一维方向上有限制,整 个 ADC 阵列的功耗为单个 ADC 功耗的 *M* 倍。以 640 ×512 面阵探测器为例,共需 640 个 ADC,每个 ADC 必须在帧周期内量化 512 个像元的输出信号,在帧频 为 50 Hz 时,要求 ADC 的采样频率至少为 25.6 kHz。 假设整个 ADC 阵列的功耗限制为 300 mW,则每个 ADC 的功耗必须小于 469 μW。并且在一维方向上 ADC 的版图宽度必须小于像元宽度。Sigme-Delta ADC 以其较高的动态范围成为列级 ADC 的首选结构 ^[14,15],而双斜率单积分型 ADC 也有报道应用于列级 ADC^[16]。

在列级 ADC 结构的数字读出电路中,每个 ADC

承担一列探测器单元的信号量化,在每一列探测器 内,光电信号积分及列多路传输皆在各像元内处理, 积分电容的尺寸依然受到像元面积的限制,积分时间 仍然受到电荷存储能力的限制,读出电路片内只能进 行有限的数字信号处理,读出电路的性能仍然无法得 到质的提升。

2.3 像素级 ADC 结构数字读出电路

像素级 ADC 结构的数字读出电路结构见图 10。 探测器的每一个像元由一个 ADC 来进行模数转换。 读出单元电路工作在模拟域及数字域,列多路传输器 及行多路传输器工作在数字域。采用像素级 ADC 的 可见光传感器在 1999 年就已报道^[17],采用像素级 ADC 的数字化红外焦平面探测器阵列直到 2006 年才 首次报道^[18]。

Fig.9 Block diagram of the column-level ADC digital readout circuit

图 10 像素级 ADC 结构数字读出电路框图

由于在像素级光电信号就已经数字化,这样的器

件被称为数字像素焦平面阵列^[19](DFPA: Digital-pixel Focal Plane Array)。在像素级 ADC 结构的数字读出电路中,每个像素内探测器单元的信号已经被量化,可以在像素级进行数字信号处理,如数字积分、数字非均匀性校正及背景及暗电流补偿等。

像素级 ADC 结构的读出电路需要在像素内集成 读出单元电路、积分电路、ADC 及多路器等,对电路 的功耗及版图尺寸存在苛刻要求,直到近年才得以在 微米 CMOS 工艺上得以实现。像素级 ADC 结构的读 出电路的通常结构为采用电流控制振荡器将光电流 转换为频率信号,再采用数字计数器在积分时间内对 频率进行计数,得到最终数字输出^[20]。

图 11 为一种像素级 ADC 结构的读出电路即数字 像素的电路框图,由读出单元电路将探测器输出的光 电流抽出,注入到积分电容 *C*_{int}进行积分,当电容上 的电压高于比较器的参考电压 *V*_{REF}时,比较器翻转, 触发单稳态触发器输出一定宽度的脉冲去控制电流 源,将电容上的电荷泻放一部分,同时比较器输出一 个脉冲给计数器。由于电容上的电荷被泻放,电容上 的电压低于参考电压 *V*_{REF},比较器输出低电平,开始 下一个周期。到积分时间结束,计数器的计数值就是 像素的输出信号,并通过数字多路传输器输出。这样 的 ADC 称为电荷包计数 ADC。电荷包计数 ADC 可 以理解为一个电流控制振荡器及计数器构成的系统, 比较器的输出脉冲的频率正比于输入的光电流信号。

图 11 数字像素读出电路框图

在图 11 的电荷包计数 ADC 中,每一个电荷包的 电荷量为:

$$Q_0 = I_0 \bullet T_0 = C_{\text{int}}(V_{\text{REF}} - V_{\text{L}}) \tag{14}$$

式中: T_0 为单稳态触发器输出脉冲的宽度; I_0 为恒流源 的电流; V_{REF} 为参考电压; V_L 为扣除电荷包后积分电 容上的电压值。经过积分时间 T_{int} 后,读出单元电路 输出的总电荷值为 Q_{Γ} ,则有:

$$Q_T = \int_0^{T_{\text{int}}} i_p(t) \mathrm{d}t \tag{15}$$

式中: *i*_p为读出单元电路输出的光电流,设 ADC 最后输出的数字值为 *N*,则有:

$$Q_T = N \cdot Q_0 + Q_{\text{res}} \tag{16}$$

式中: Q_{res} 为积分时间结束后 C_{int} 上残存的电荷,由电路的工作原理可知, $Q_{\text{res}} < Q_0$,从式(15)和式(16)可得:

$$N = \frac{1}{Q_0} \int_0^{T_{int}} i_p(t) dt - \frac{Q_{res}}{Q_0}$$
(17)

也即 ADC 的输出 N 表达了光电流在 T_{int} 内的积分, ADC 的 LSB 为 Q_0 , 且残存电荷引入的误差小于 一个 LSB。

由电荷包计数 ADC 构成的数字读出电路与传统 的模拟读出电路、片级及列级 ADC 构成的数字读出 电路有较大的差异。在传统的读出电路中,积分电容 C_{int} 的值决定了读出电路的电荷存储容量,也即读出 电路的动态范围;而系统的最小分辨率 LSB 则由后续 片内或片外的 ADC 的分辨率决定。在由电荷包计数 ADC 构成的数字读出电路中,积分电容 C_{int}的值决定 了系统的最小分辨率 LSB;而读出电路的电荷存储容 量,也即读出电路的动态范围由后续计数器的位数决 定。由式(14)可以直接设计电荷包计数 ADC 的最小分 辨率 LSB,由数字计数器的位数可以设计电荷包计数 ADC 的动态范围。

在图 11 所示的电荷包计数 ADC 中,需要精密的 电流源和定宽度的脉冲产生电路,在像素内实现需要 占用较大的芯片面积。从式(16)可知,只要保证每次 扣减的电荷量 *Q*₀一致,就不会影响 ADC 的精度。

图 12 中的简化电荷包计数器 ADC 采用一个晶体 管 M_r 将积分电容上的电荷泻放完毕,此时每一个电 荷包的电荷量为:

$$Q_0 = I_{\rm D} \bullet t_{\rm f} \approx C_{\rm int} \bullet V_{\rm REF} \tag{18}$$

式中: I_D 为晶体管 M_r 的漏极电流; t_f 为比较器回路的 延时^[20]。电路其余部分与图 11 完全相同。这样可以 极大地简化电路,但也引入误差: 晶体管 M_r 导通的 时间由比较器回路的延时决定,重复精度不高; 晶体 管 M_r 导通时流过的电流由晶体管参数及比较器输出 电压决定,重复精度不高。仿真表明,这样的简化仍 然能保证 15 bit 左右的精度,满足红外探测器读出电 路的需要。

图 13 为另一种更简化的电荷包计数器 ADC, 采 用级联的反相器来实现图 12 中比较器的功能^[18]。该 电路的优点是电路简单,仅用 4 个反相器就实现了比 较器的功能。与比较器相比,反相器的阈值电压由晶 体管尺寸决定,无法自由变化。但反相器的电路简单, 功耗较低。电路采用4个级联的比较器来产生宽度为 tf的脉冲,如果要求脉冲宽度短,可以采用两个级联 的反相器来产生,进一步简化电路。

图 12 简化电荷包计数 ADC 电路框图

Fig.12 Block diagram of the simplified charge pocket counting ADC

Fig.13 Block diagram of another simplified charge pocket counting ADC

3 数字积分技术

电荷包计数 ADC 利用简单的电路构建了焦平面 探测器读出电路中的关键部件:积分器及量化器,利 用数字积分技术来完成光电信号的积分累加。将电荷 包计数 ADC 的概念推广,可以得到一类型的像素级 ADC,即电流或电压控制振荡器和相应的数字积分器 构成的 ADC^[21-23]。在这一类的 ADC 中,电流或电压 控制振荡器将输入的电压或电流转换为一定频率的 脉冲,数字积分器在一定积分时间内统计电流或电压 控制振荡器输出脉冲的平均频率,统计结果以数字的 方式输出。有两个关键参数影响读出电路的性能:电 流或电压控制振荡器的线性度以及数字积分器的位 数。电流或电压控制振荡器的线性度决定 ADC 的精 度,而数字积分器的位数决定 ADC 的动态范围。

电荷包计数 ADC 的动态范围是随着数字积分器 的位数上升的,也即数字积分器的等效电荷存储容量 随着数字积分器的位数上升而增加。因为红外信号的 大动态范围的特点,通常要求 ADC 能够处理 14 bit 以上的动态范围,也即要求数字积分器实现 14 bit 以 上的位数。要在像元面积内实现 14 bit 以上的计数器 是具有困难的,需要在计数器的电路及版图设计上做 出优化。

计数器的基本单元是 D 触发器,每一 bit 需要一

个 D 触发器。一个典型的 D 触发器需要 18 个晶体管, 14 bit 计数器本身就需要用 252 个晶体管来实现。再加 上 14 bit 的数据寄存器及其他电路,在有限的像元面 积内需要集成 500 个以上的晶体管,这对版图设计是 一个很大的挑战。一个解决办法是采用动态 D 触发器 来减少晶体管的数目。一个静态 D 触发器需要 18 个 晶体管来实现,而一个动态 D 触发器需要 18 个 晶体管来实现,而一个动态 D 触发器只需要 6 个晶体 管来实现,大大减少了版图设计的困难。随着 CMOS 技术的发展,CMOS 器件的线宽不断减小,使得在有 限的像元面积内可集成更多位数的数字计数器,有效 的解决了传统读出电路电荷存储容量不足的问题,大 幅度提高红外焦平面探测器的性能。

No.3

2012

数字积分技术的出现打破了模拟读出电路电荷存储容量的限制,对提高红外焦平面探测器的性能起到了至关重要的作用。2010 年法国 CEA-Leti 及Sofradir 报道了数字化长波 320×256 焦平面探测器^[24] ^[25],其读出电路采用了电荷包计数 ADC 及数字积分技术,在 25 µm×25 µm 的像元内集成了直接注入读出单元电路,电荷包计数 ADC 及 15 bit 的数字积分器,等效电荷存储容量达到了 3×10⁹个电子电荷,每一个电荷包的电荷量即 ADC 的 LSB 为 9.1×10⁴个电子电荷。在通常的应用中,其积分时间可以到 19 ms,探测器的平均 NETD 达到 1.9 mK,比未采用数字积分技术的同类探测器的性能提高近一个数量级。

4 结论

数字读出电路是第三代红外焦平面探测器的主 要标志。采用数字读出电路可以降低系统复杂度,提 高系统可靠性。更重要的是采用数字读出电路能够应 用模拟读出电路无法实现的多种数字信号处理技术, 大幅度提高红外焦平面探测器的性能。采用像素级 ADC 的数字读出电路可以集成数字积分技术,利用数 字电路完成光电信号的积分,突破由于像元面积限制 带来的电荷存储容量的限制,进而延长积分时间,极 大地提高红外焦平面探测器的性能。

参考文献:

- Hsieh C C, Wu C Y, Jih F W, et al. Focal-plane arrays and CMOS readout techniques of infrared imaging systems[C]//IEEE Trans. on Circuits and Systems for Video Tech., 1997, 7: 594-605.
- [2] Rosbeck J P, Starr R E, Price S L, et al. Background and temperature dependent current-voltage characteractics of HgCdTe photodiodes[J]. *Appl. Phys.*, 1982, 53: 6430-6440.
- [3] Pelgrom M J, Duinmaijer A C J, Welbers A P. Matching properties of MOS transistors[J]. *IEEE Solid-State Circuits*, 1989, 24: 1433-1440.

- Yoon N, Kim B, Lee H C, et al. High injection efficiency readout circuit for low resistance infra-red detector[J]. *IEE Electronics Letters*, 1999, 35(18): 1507-1508.
- [5] Bluzer N, Stehlik R. Buffered direct injection of photocurrents into charge coupled devices[J]. *IEEE Trans. Electron Devices*, 1978, 25(2): 160–166.
- [6] Fowler A M, Probst R G, Britt J P et al. Evaluation of an indium antimonide hybrid focal plane array for ground-based infrared astronomy[J]. Opt. Eng., 1987, 26: 232–240,
- [7] Kozlowski L, Cabelli S, Kezer R, et al. 10×132 CMOS/CCD readout with 25 μm pitch and on-chip signal processing including CDS and TDI[C]// Proc. SPIE in Infrared Readout Electronics, 1992, 1684: 222–230.
- [8] Hsieh C-C, Wu C Y, Sun T P, et al. High-performance CMOS buffered gate modulation input (BGMI) readout circuits for IR FPA[J]. *IEEE Solid-State Circuits*, 1998, 33: 1188-1198.
- [9] Kulah H., Akin T. A current mirroring integration based readout circuit for high performance infrared FPA applications[J]. *IEEE Trans. Circuits Syst. II*, 2003, **50**(4): 181-186.
- [10] Kang S G, Woo D H, Lee H C. Multiple integration method for a high signal-to-noise ratio readout integrated circuit.[J]. *IEEE Trans. Circuits Syst. II*, 2005, **52**(9): 299-302.
- [11] Vial L, Combette A, Gohier D et al. Latest developments on MCT staring arrays[C]// Proc. of SPIE in Electro-Optical and Infrared Systems: Technology and Applications III, 2006.6395, 63950E,.
- Fillon P et al, Digital output for high performance MCT staring arrays
 I[C]// Proc. of SPIE in Infrared Technology and Applications XXXII, 2006, 6206: 62060U.
- [13] Decaens G, Zecri M, Maillart P, et al. Ultra low power ADC on chip for high performance IR detector[C]// Proc. of SPIE in Infrared Technology and Applications XXXV, 2009, 7298: 72983H.
- [14] Guelleca F, Villard P, Rothan F, et al. Sigma-delta column-wise A/D conversion for cooled ROIC[C]// Proc. of SPIE in Infrared Technology and Applications XXXIII, 2007, 6542: 65423N,.
- [15] Weiler D, Ruß M, Würfel D, et al. A digital 25 µm pixel-pitch uncooled amorphous silicon TEC-less VGA IRFPA with massive parallel sigma-delta-ADC readout[C]// Proc. of SPIE. in Infrared Technology and Applications XXXVI, 2010, 7660: 76600S.

- [16] Fillon P, Dugalleix S, Pistone F et al. Digital output for high performance MCT staring arrays[C]// Proc. of SPIE in Infrared Technology and Applications XXXII, 2006, 6206: 62060U.
- [17] Yang D X D Gamal A E, Fowler B et al. A 640×512 CMOS image sensor with ultrawide dynamic range floating-Point Pixel-Level ADC[J]. *IEEE Solid-State Circuits*, 1999, **34**(12): 1821-1834.
- [18] Kelly M, Berger R, Colonedro C, et al. Design and testing of an all-digital readout integrated circuit for infrared focal plane arrays[C]// Proc. of SPIE in Focal Plane Arrays for Space Telescopes II, 2005. 5902: 59020J.
- [19] Brown M G. Digital-pixel focal plane array development[C]// Proc. of SPIE in Quantum Sensing and Nanophotonic Devices VII, 2010, 7608: 76082H.
- [20] Wang X, Wong W and. Hornsey R. A high dynamic range CMOS image sensor with in pixel light-to-frequency conversion[J]. *IEEE Trans. Electron Devices*, 2006, 53(12): 2988–2992.
- [21] Yao L. CMOS readout circuit design for infrared image sensors[C]// Proc. of SPIE in International Symposium on Photoelectronic Detection and Imaging 2009, Advances in Imaging Detectors and Applications, 2009, 7384: 73841B-1.
- [22] Graaf G, Wolffenbuttel R F. Light-to-frequency converter using integrating mode photodiodes[J]. *IEEE Tran. Instrum. Meas.*, 1997, 46(4): 933-936.
- [23] Tchagaspanian M, Villard P, Dupont B, et al. Design of ADC in 25 µm pixels pitch dedicated for IRFPA image processing at LETI[C]// Proc. of SPIE in Infrared Technology and Applications XXXII, 2007.6542: 65421W.
- [24] Bisottoa S, de Borniol E, Mollard L et al. A 25 µm Pitch LWIR Staring Focal plane array with pixel-level 15-bit ADC ROIC achieving 2 mK NETD[C]// Proc. of SPIE in Electro-Optical and Infrared Systems: Technology and Applications VII, 2002.7834: 78340J.
- [25] Guellec F, Peizerat A, Tchagaspanian M, et al. A 25 µm pitch LWIR focal plane array with pixel-level 15-bit ADC providing high well capacity and targeting 2 mK NETD[C]// Proc. of SPIE in Infrared Technology and Applications XXXVI, 2010.7660: 76603T.