留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空间红外相机技术发展现状及应用

潘朝猛 康丽珠 罗敏 陶亮 陈树刚 陈波 白忠宏 崔海 徐参军 赵劲松

潘朝猛, 康丽珠, 罗敏, 陶亮, 陈树刚, 陈波, 白忠宏, 崔海, 徐参军, 赵劲松. 空间红外相机技术发展现状及应用[J]. 红外技术, 2022, 44(11): 1186-1194.
引用本文: 潘朝猛, 康丽珠, 罗敏, 陶亮, 陈树刚, 陈波, 白忠宏, 崔海, 徐参军, 赵劲松. 空间红外相机技术发展现状及应用[J]. 红外技术, 2022, 44(11): 1186-1194.
PAN Chaomeng, KANG Lizhu, LUO Min, TAO Liang, CHEN Shugang, CHEN Bo, BAI Zhonghong, CUI Hai, XU Canjun, ZHAO Jinsong. Development Status and Application of Space Infrared Camera Optical Technology[J]. Infrared Technology , 2022, 44(11): 1186-1194.
Citation: PAN Chaomeng, KANG Lizhu, LUO Min, TAO Liang, CHEN Shugang, CHEN Bo, BAI Zhonghong, CUI Hai, XU Canjun, ZHAO Jinsong. Development Status and Application of Space Infrared Camera Optical Technology[J]. Infrared Technology , 2022, 44(11): 1186-1194.

空间红外相机技术发展现状及应用

详细信息
    作者简介:

    潘朝猛(1998-),男,硕士研究生,红外光学设计方向。E-mail: 601870433@qq.com

  • 中图分类号: TH74

Development Status and Application of Space Infrared Camera Optical Technology

  • 摘要: 随着卫星载荷在大气和地物等目标探测、识别领域的广泛应用,空间红外相机技术得到了快速发展,这对空间红外光学系统的技术水平也提出了越来越高的要求。本文通过调研近十年来国内外典型星载红外光电载荷的技术特点及其变化情况,分析、总结了空间红外光学技术的研究现状和发展趋势。
  • 图  1  资源一号卫星示意图

    Figure  1.  Diagram of the ZY-1 satellite

    图  2  高分四号卫星示意图

    Figure  2.  Diagram of GF-4 satellite

    图  3  台风“尼伯特”观测图

    Figure  3.  Observation of Typhoon 'Nepartak'

    图  4  施密特型光学系统

    Figure  4.  Schmidt type optical system

    图  5  HEO-2拍摄导弹穿过云层发射的红外图像

    Figure  5.  Infrared image taken by HEO-2 of missile launching through clouds

    图  6  EnMAP工作扫描图

    Figure  6.  Diagram of EnMAP working scan

    图  7  资源一号02D卫星示意图

    Figure  7.  Diagram of ZY-02D satellite

    图  8  天津港的伪彩色合成图

    Figure  8.  False-color composite of Tianjin Port

    图  9  高分五号卫星示意图

    Figure  9.  Diagram of GF-5 satellite

    图  10  PRIMSA空间相机布局图

    Figure  10.  Layout of PRIMSA space camera

    表  1  资源一号相机性能参数

    Table  1.   Performance parameters of ZY-1 camera

    Performance parameters Value
    Spectral range/μm VIS/NIR: 0.5-0.9;SWIR: 1.55-1.75、2.05-2.35;LWIR: 10.4-12.5
    Width/km 119
    Spatial resolution/m VIS/NIR SWIR: 78 LWIR: 156
    Optical system type R-C
    Aperture/mm 250
    Focal length/mm 1000
    Detector SWIR: Photovoltaic mercury HgCdTe detector
    LWIR: Photoconductance mercury HgCdTe detector
    Refrigeration temperature/K SWIR: 148
    LWIR: 105
    Pixel size/mm 0.1×0.1
    下载: 导出CSV

    表  2  高分四号传感器性能参数

    Table  2.   Performance parameters of GF-4 sensor

    Performance parameters Value
    Spectral range/μm VIS/NIR: 0.45-0.90
    MWIR: 3.50-4.10
    Spatial resolution/m VIS/NIR: 50
    MWIR: 400
    Width/km 400
    下载: 导出CSV

    表  3  环境减灾-1B卫星空间相机性能参数

    Table  3.   Performance parameters of HJ-1B satellite space camera

    Performance parameters Value
    Spatial resolution/m 150
    Spectrum number 4
    Width/km 720
    Spectral range/μm NIR: 0.75-1.1
    SWIR: 1.55-1.75
    MWIR: 3.5-3.9
    LWIR: 10.5-12.5
    下载: 导出CSV

    表  4  GEO-Oculus卫星空间相机性能参数

    Table  4.   Performance parameters of the GEO-Oculus satellite space camera

    Performance parameters Value
    Mass/kg 606
    Power/W 500
    Spatial resolution/m Visible light: 21
    NIR: 21
    SWIR\MWIR: 150
    LWIR: 375
    Width/km VIS/NIR: 157×157
    Other spectrum: 300×300
    MTF 0.098-0.117
    Radiation resolution/(bit/pixel) 18
    Optical system type korsch
    Detector pixels VIS/NIR: 10000×10000
    MWIR: 2000×2000
    LWIR: 800×800
    下载: 导出CSV

    表  5  EnMAP卫星高光谱成像仪性能参数

    Table  5.   Performance parameters of EnMAP satellite hyperspectral imager

    Performance parameters Value
    Spectral range/NM VIS/NIR: 420-1000
    SWIR: 900-2450
    Spectral resolution/nm VIS/NIR: 6.5,SWIR: 10
    Spatial resolution/m 30
    width/km 30
    Radiation resolution/(bit/pixel) 14
    Optical system type TMA
    Field of view/° 2.63
    Aperture/m 0.174
    Focal length/m 0.5224
    F number 3.0
    Signal-to-noise ratio VIS/NIR: > 400,SWIR: > 150
    下载: 导出CSV

    表  6  ALOS-3携带的HSS性能参数

    Table  6.   HSS performance parameters carried by ALOS-3

    Performance parameters Value
    Spatial resolution/m 30
    Width/km 30
    Spectral range/nm VIS/NIR: 400-970
    SWIR: 900-2500
    Spectral resolution/nm VIS/NIR: 10   SWIR: 12.5
    Optical system type TMA
    Signal-to-noise ratio > 300
    MTF > 0.2
    Radiation resolution/(bit/pixel) 12
    Detector VIS/NIR: CMOS
    SWIR: HgCdTe
    下载: 导出CSV

    表  7  高光谱相机性能参数

    Table  7.   Performance parameters of hyperspectral camera

    Performance parameters Value
    Spectral range/μm 0.4-2.5
    Spectrum number 166
    Spatial resolution/m 30
    Width/km 60
    Digitalizing bit/ bits 12
    Spectral resolution/nm VIS/NIR:
    10 nm(total 76 spectral numbers)
    SWIR:
    20 nm(total 90 spectral numbers)
    下载: 导出CSV

    表  8  可见光短波红外高光谱相机性能参数

    Table  8.   Performance parameters of AHSI

    Performance parameters Value
    Spectral range/μm 0.4-2.5
    Spatial resolution/m 30
    width/km 60
    Spectral resolution/nm VIS/NIR:5
    SWIR:10
    下载: 导出CSV

    表  9  全谱段光谱成像仪性能参数

    Table  9.   Performance parameters of full-spectrum spectral imager

    Performance parameters Value
    Spectral range/μm 0.45-0.52
    0.52-0.60
    0.62-0.68
    0.76-0.86
    1.55-1.75
    2.08-2.35
    3.50-3.90
    4.85-5.05
    8.01-8.39
    8.42-8.83
    10.3-11.3
    11.4-12.5
    Spatial resolution 20 m(0.45-2.35 μm)
    40 m(3.5-12.5 μm)
    Width/km 60
    下载: 导出CSV

    表  10  Primsa高光谱成像仪性能参数

    Table  10.   Performance parameters of Primsa hyperspectral imager

    Performance parameters Value
    Size/m 0.77×0.59×0.78
    Mass/kg < 90
    Spatial resolution/m Visible spectral: 5;
    Hyperspectral: 30
    Width/km 30
    Spectral range/nm Visible spectral: 400-700;
    VIS/NIR: 400-1010;
    SWIR: 920-2505
    Optical system type TMA
    Aperture/m 0.21
    Focal length/m 0.62
    Radiation resolution/(bit/pixel) 12
    Signal-to-noise ratio (average) Visible spectral > 240;
    VIS/NIR > 200;SWIR > 100
    Detector pixels Visible spectral: 6000;
    hyperspectral: 1000×256
    Pixel size/μm Visible spectral: 6.5;
    Hyperspectral: 30
    下载: 导出CSV
  • [1] 付联校, 徐松, 焦彤, 等. 空间光学载荷发展现状及趋势[C]//2015年红外、遥感技术与应用研讨会暨交叉学科论坛论文集, 2015: 1-10.

    FU Lianxiao, XU Song, JIAO Tong, et al. Development status and trend of space optical loading [C]// Proceedings of 2015 Infrared and Remote Sensing Technology and Application Symposium and Interdisciplinary Forum, 2015: 1-10.
    [2] 涂满红. "北斗"卫星导航系统在气象领域的应用[J]. 国际太空, 2013(4): 20-22. https://www.cnki.com.cn/Article/CJFDTOTAL-GJTK201304008.htm

    TU Manhong. The application of "Beidou" satellite navigation system in meteorological field [J]. Space International, 2013(4): 20-22. https://www.cnki.com.cn/Article/CJFDTOTAL-GJTK201304008.htm
    [3] 徐俊, 姚行中, 乔哲. 美国KH-12照相侦察卫星及其情报处理体系研究[J]. 中国水运: 理论版, 2008(1): 212-213. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYUN200801102.htm

    XU Jun, YAO Xingzhong, QIAO Zhe. Research on American KH-12 photographic reconnaissance satellite and its information processing system[J]. China Water Transport: Theoretical Edition, 2008(1): 212-213. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYUN200801102.htm
    [4] 李大耀. 资源一号卫星的红外相机和CCD相机[J]. 中国航天, 1999(11): 13-15. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHA199911003.htm

    LI Dayao. Infrared camera and CCD camera of Ziyuan-1 satellite [J]. Aerospace China, 1999(11): 13-15. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHA199911003.htm
    [5] 刘凤晶, 李果, 于登云, 等. 高分四号卫星及应用概况[J]. 卫星应用, 2018(12): 12-18. doi:  10.3969/j.issn.1674-9030.2018.12.006

    LIU Fengjing, LI Guo, YU Dengyun, et al. Gaofen-4 satellite and its application[J]. Satellite Applications, 2018(12): 12-18. doi:  10.3969/j.issn.1674-9030.2018.12.006
    [6] 田瑜基. 高分四号卫星应用研究探析[J]. 科技创新导报, 2020, 17(17): 22-23, 149. doi:  10.16660/j.cnki.1674-098X.2020.17.022

    TIAN Yuji. Application research of Gaofen-4 satellite [J]. Science and Technology Innovation Review, 2020, 17(17): 22-23, 149. doi:  10.16660/j.cnki.1674-098X.2020.17.022
    [7] 马文坡, 练敏隆. "高分四号"卫星凝视相机的技术特点[J]. 航天返回与遥感, 2016, 37(4): 26-31. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG201604004.htm

    MA Wenpo, LIAN Minlong. Technical characteristics of the gaze camera of Gaofen-4 satellite [J]. Space Return & Remote Sensing, 2016, 37(4): 26-31. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG201604004.htm
    [8] Global Security. SBIRS GEO-Geostationary Earth Orbit [EB/OL]. http://www.globalsecurity.org/space/systems/sbirs-geo.html, [2021-01-07] (2022-10-25).
    [9] 张京男. 洛马公司2020年航天发展研究[J]. 中国航天, 2021(1): 20-30. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHT202101005.htm

    ZHANG Jingnan. Lockheed Martin Aerospace development research in 2020 [J]. China Aerospace, 2021(1): 20-30. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHT202101005.htm
    [10] Lockheed Martin. SBIRS GEO[EB/OL]. https://www.lockheedmartin.com/en-us/products/sbirs.html, [2022-10-25].
    [11] U. S. Air Force. Second SBIRS payload completes early on-orbit checkout[EB/OL]. https://www.af.mil/News/Article-Display/Article/123215/second-sbirs-payload-completes-early-on-orbitcheckout, [2008-06-20], (2022-10-25).
    [12] 白照广, 沈中, 王肇宇. 环境减灾-1A、1B卫星技术[J]. 航天器工程, 2009, 18(6): 1-11. doi:  10.3969/j.issn.1673-8748.2009.06.001

    BAI Zhaoguang, SHEN Zhong, WANG Zhaoyu. Satellite technology for environmental disaster mitigation[J]. Spacecraft Engineering, 2009, 18(6): 1-11. doi:  10.3969/j.issn.1673-8748.2009.06.001
    [13] 王桥, 杨一鹏, 赵少华, 等. 环境减灾卫星在我国生态环境中的应用[J]. 国际太空, 2018(9): 16-19. https://www.cnki.com.cn/Article/CJFDTOTAL-GJTK201809005.htm

    WANG Qiao, YANG Yipeng, ZHAO Shaohua, et al. Application of environmental disaster reduction satellite in China's ecological environment [J]. International Space Journal, 2018(9): 16-19. https://www.cnki.com.cn/Article/CJFDTOTAL-GJTK201809005.htm
    [14] 朱仁璋, 丛云天, 王鸿芳, 等. 全球高分光学星概述(二): 欧洲[J]. 航天器工程, 2016, 25(1): 95-118. https://www.cnki.com.cn/Article/CJFDTOTAL-HTGC201601015.htm

    ZHU Renzhang, CONG Yuntian, WANG Hongfang, et al. Global Gaofen optical star overview (II): Europe [J]. Spacecraft Engineering, 2016, 25(1): 95-118. https://www.cnki.com.cn/Article/CJFDTOTAL-HTGC201601015.htm
    [15] Schull U, Knigge T. Geo-oculus: A mission for real-time monitoring through high resolution imaging from geostationary orbit[C]//EUMETSAT Meteorological Satellite Conference, 2008: 1-8.
    [16] Oscar. EnMAP HSI instrument specification[EB/OL]. https://space.oscar.wmo.int/instruments/view/hsi_enmap, [2022-04-04].
    [17] Stuffler T, Kaufmann C, Hofer S, et al. The EnMAP hyperspectral imager-an advanced optical payload for future applications in Earth observation programmes[J]. Acta Astronautica, 2007, 61(1-6): 115-120.
    [18] Matsunaga T, Yamamoto S, Kashimura O, et al. Operation plan study for Japanese future hyperspectral mission: HISUI[C]//Proceedings in 34th International Symposium on Remote Sensing of Environment, 2011: 1-3.
    [19] Arifin S. Potensi pemanfaatan satelit alos-3[J]. Berita Dirgantara, 2015, 16(2): 61-72.
    [20] 刘银年, 孙德新, 韩波, 等. 资源一号02D卫星可见短波红外高光谱相机研制[J]. 航天器工程, 2020, 29(6): 85-92. https://www.cnki.com.cn/Article/CJFDTOTAL-HTGC202006017.htm

    LIU Yinian, SUN Dexin, HAN Bo, et al. Development of the visible short-wave infrared hyperspectral camera of Zuiyuan-1 02D satellite [J]. Spacecraft Engineering, 2020, 29(6): 85-92. https://www.cnki.com.cn/Article/CJFDTOTAL-HTGC202006017.htm
    [21] 童庆禧, 张兵, 张立福. 中国高光谱遥感的前沿进展[J]. 遥感学报, 2016, 20(5): 689-707. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201605003.htm

    TONG Qingxi, ZHANG Bing, ZHANG Lifu. Advances in hyperspectral remote sensing in China[J]. Journal of Remote Sensing, 2016, 20(5): 689-707. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201605003.htm
    [22] 孙允珠, 蒋光伟, 李云端, 等. "高分五号"卫星概况及应用前景展望[J]. 航天返回与遥感, 2018, 39(3): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG201803002.htm

    SUN Y Z, JIANG G W, LI Y W, et al. General situation and application prospect of Gaofen-5 satellite [J]. Space Return & Remote Sensing, 2018, 39(3): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG201803002.htm
    [23] 刘银年. "高分五号"卫星可见短波红外高光谱相机的研制[J]. 航天返回与遥感, 2018, 39(3): 25-28. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG201803004.htm

    LIU Yinnian. Development of visible short-wave infrared hyperspectral camera of "Gaofen-5" satellite [J]. Space Return & Remote Sensing, 2018, 39(3): 25-28. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG201803004.htm
    [24] 王雅鹏. 大气红外甚高分辨率掩星探测仪温压及臭氧廓线反演算法研究[D]. 北京: 中国科学院大学(中国科学院遥感与数字地球研究所), 2017.

    WANG Yapeng. Research on Inversion algorithm of atmospheric temperature pressure and ozone profile of infrared Very high Resolution occultation Detector[D]. Beijing: University of Chinese Academy of Sciences (Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences), 2017.
    [25] 孙宇航, 王威卜, 黄启宏, 等. "高分五号"卫星光学遥感载荷的技术创新[J]. 网络安全技术与应用, 2020(3): 111-112. https://www.cnki.com.cn/Article/CJFDTOTAL-WLAQ202003066.htm

    SUN Yuhang, WANG Weibo, HUANG Qihang, et al. Technology innovation of optical remote sensing payload of Gaofen-5 satellite [J]. Network Security Technology and Application, 2020(3): 111-112. https://www.cnki.com.cn/Article/CJFDTOTAL-WLAQ202003066.htm
    [26] 侯立周, 徐彭梅, 张玉贵, 等. 大气环境红外甚高光谱分辨率探测仪关键技术[J]. 上海航天, 2019, 36(S2): 117-125. https://www.cnki.com.cn/Article/CJFDTOTAL-SHHT2019S2019.htm

    HOU Lizhou, XU Pengmei, ZHANG Yugui, et al. Key technologies of infrared very high spectral resolution sounder in atmospheric environment [J]. Shanghai Aerospace, 2019, 36(S2): 117-125. https://www.cnki.com.cn/Article/CJFDTOTAL-SHHT2019S2019.htm
    [27] 李献球, 李春霞, 蒋东方. 微纳卫星在卫星导航中的应用探讨[J]. 现代导航, 2015, 6(5): 391-395. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDH201505001.htm

    LI Xianqiu, LI Chunxia, JIANG Dongfang. Discussion on the application of micro-nano satellite in satellite navigation[J]. Modern Navigation, 2015, 6(5): 391-395. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDH201505001.htm
    [28] Sacchetti A, Cisbani A, Babini G, et al. The Italian Precursor of an Operational Hyperspectral Imaging Mission[M]. Berlin: Springer, 2010: 73-81.
  • 加载中
图(10) / 表(10)
计量
  • 文章访问数:  73
  • HTML全文浏览量:  17
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-20
  • 修回日期:  2022-02-09
  • 刊出日期:  2022-11-20

目录

    /

    返回文章
    返回