Development Status and Application of Space Infrared Camera Optical Technology
-
摘要: 随着卫星载荷在大气和地物等目标探测、识别领域的广泛应用,空间红外相机技术得到了快速发展,这对空间红外光学系统的技术水平也提出了越来越高的要求。本文通过调研近十年来国内外典型星载红外光电载荷的技术特点及其变化情况,分析、总结了空间红外光学技术的研究现状和发展趋势。Abstract: With the widespread application of satellite payloads in the field of target detection and recognition, such as the atmosphere and ground objects, space infrared camera technology has been rapidly developed, which also necessitates increasingly higher requirements for the technical level of space infrared optical systems. This study analyzed and summarized the research status and development trend of space infrared optical technology by investigating the technical characteristics and changes in typical spaceborne infrared photoelectric loads at home and abroad over the past ten years.
-
Key words:
- infrared camera /
- optical load /
- high resolution
-
表 1 资源一号相机性能参数
Table 1. Performance parameters of ZY-1 camera
Performance parameters Value Spectral range/μm VIS/NIR: 0.5-0.9;SWIR: 1.55-1.75、2.05-2.35;LWIR: 10.4-12.5 Width/km 119 Spatial resolution/m VIS/NIR SWIR: 78 LWIR: 156 Optical system type R-C Aperture/mm 250 Focal length/mm 1000 Detector SWIR: Photovoltaic mercury HgCdTe detector
LWIR: Photoconductance mercury HgCdTe detectorRefrigeration temperature/K SWIR: 148
LWIR: 105Pixel size/mm 0.1×0.1 表 2 高分四号传感器性能参数
Table 2. Performance parameters of GF-4 sensor
Performance parameters Value Spectral range/μm VIS/NIR: 0.45-0.90
MWIR: 3.50-4.10Spatial resolution/m VIS/NIR: 50
MWIR: 400Width/km 400 表 3 环境减灾-1B卫星空间相机性能参数
Table 3. Performance parameters of HJ-1B satellite space camera
Performance parameters Value Spatial resolution/m 150 Spectrum number 4 Width/km 720 Spectral range/μm NIR: 0.75-1.1
SWIR: 1.55-1.75
MWIR: 3.5-3.9
LWIR: 10.5-12.5表 4 GEO-Oculus卫星空间相机性能参数
Table 4. Performance parameters of the GEO-Oculus satellite space camera
Performance parameters Value Mass/kg 606 Power/W 500 Spatial resolution/m Visible light: 21
NIR: 21
SWIR\MWIR: 150
LWIR: 375Width/km VIS/NIR: 157×157
Other spectrum: 300×300MTF 0.098-0.117 Radiation resolution/(bit/pixel) 18 Optical system type korsch Detector pixels VIS/NIR: 10000×10000
MWIR: 2000×2000
LWIR: 800×800表 5 EnMAP卫星高光谱成像仪性能参数
Table 5. Performance parameters of EnMAP satellite hyperspectral imager
Performance parameters Value Spectral range/NM VIS/NIR: 420-1000
SWIR: 900-2450Spectral resolution/nm VIS/NIR: 6.5,SWIR: 10 Spatial resolution/m 30 width/km 30 Radiation resolution/(bit/pixel) 14 Optical system type TMA Field of view/° 2.63 Aperture/m 0.174 Focal length/m 0.5224 F number 3.0 Signal-to-noise ratio VIS/NIR: > 400,SWIR: > 150 表 6 ALOS-3携带的HSS性能参数
Table 6. HSS performance parameters carried by ALOS-3
Performance parameters Value Spatial resolution/m 30 Width/km 30 Spectral range/nm VIS/NIR: 400-970
SWIR: 900-2500Spectral resolution/nm VIS/NIR: 10 SWIR: 12.5 Optical system type TMA Signal-to-noise ratio > 300 MTF > 0.2 Radiation resolution/(bit/pixel) 12 Detector VIS/NIR: CMOS
SWIR: HgCdTe表 7 高光谱相机性能参数
Table 7. Performance parameters of hyperspectral camera
Performance parameters Value Spectral range/μm 0.4-2.5 Spectrum number 166 Spatial resolution/m 30 Width/km 60 Digitalizing bit/ bits 12 Spectral resolution/nm VIS/NIR:
10 nm(total 76 spectral numbers)SWIR:
20 nm(total 90 spectral numbers)表 8 可见光短波红外高光谱相机性能参数
Table 8. Performance parameters of AHSI
Performance parameters Value Spectral range/μm 0.4-2.5 Spatial resolution/m 30 width/km 60 Spectral resolution/nm VIS/NIR:5
SWIR:10表 9 全谱段光谱成像仪性能参数
Table 9. Performance parameters of full-spectrum spectral imager
Performance parameters Value Spectral range/μm 0.45-0.52
0.52-0.60
0.62-0.68
0.76-0.86
1.55-1.75
2.08-2.35
3.50-3.90
4.85-5.05
8.01-8.39
8.42-8.83
10.3-11.3
11.4-12.5Spatial resolution 20 m(0.45-2.35 μm)
40 m(3.5-12.5 μm)Width/km 60 表 10 Primsa高光谱成像仪性能参数
Table 10. Performance parameters of Primsa hyperspectral imager
Performance parameters Value Size/m 0.77×0.59×0.78 Mass/kg < 90 Spatial resolution/m Visible spectral: 5;
Hyperspectral: 30Width/km 30 Spectral range/nm Visible spectral: 400-700;
VIS/NIR: 400-1010;
SWIR: 920-2505Optical system type TMA Aperture/m 0.21 Focal length/m 0.62 Radiation resolution/(bit/pixel) 12 Signal-to-noise ratio (average) Visible spectral > 240;
VIS/NIR > 200;SWIR > 100Detector pixels Visible spectral: 6000;
hyperspectral: 1000×256Pixel size/μm Visible spectral: 6.5;
Hyperspectral: 30 -
[1] 付联校, 徐松, 焦彤, 等. 空间光学载荷发展现状及趋势[C]//2015年红外、遥感技术与应用研讨会暨交叉学科论坛论文集, 2015: 1-10.FU Lianxiao, XU Song, JIAO Tong, et al. Development status and trend of space optical loading [C]// Proceedings of 2015 Infrared and Remote Sensing Technology and Application Symposium and Interdisciplinary Forum, 2015: 1-10. [2] 涂满红. "北斗"卫星导航系统在气象领域的应用[J]. 国际太空, 2013(4): 20-22. https://www.cnki.com.cn/Article/CJFDTOTAL-GJTK201304008.htmTU Manhong. The application of "Beidou" satellite navigation system in meteorological field [J]. Space International, 2013(4): 20-22. https://www.cnki.com.cn/Article/CJFDTOTAL-GJTK201304008.htm [3] 徐俊, 姚行中, 乔哲. 美国KH-12照相侦察卫星及其情报处理体系研究[J]. 中国水运: 理论版, 2008(1): 212-213. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYUN200801102.htmXU Jun, YAO Xingzhong, QIAO Zhe. Research on American KH-12 photographic reconnaissance satellite and its information processing system[J]. China Water Transport: Theoretical Edition, 2008(1): 212-213. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYUN200801102.htm [4] 李大耀. 资源一号卫星的红外相机和CCD相机[J]. 中国航天, 1999(11): 13-15. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHA199911003.htmLI Dayao. Infrared camera and CCD camera of Ziyuan-1 satellite [J]. Aerospace China, 1999(11): 13-15. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHA199911003.htm [5] 刘凤晶, 李果, 于登云, 等. 高分四号卫星及应用概况[J]. 卫星应用, 2018(12): 12-18. doi: 10.3969/j.issn.1674-9030.2018.12.006LIU Fengjing, LI Guo, YU Dengyun, et al. Gaofen-4 satellite and its application[J]. Satellite Applications, 2018(12): 12-18. doi: 10.3969/j.issn.1674-9030.2018.12.006 [6] 田瑜基. 高分四号卫星应用研究探析[J]. 科技创新导报, 2020, 17(17): 22-23, 149. doi: 10.16660/j.cnki.1674-098X.2020.17.022TIAN Yuji. Application research of Gaofen-4 satellite [J]. Science and Technology Innovation Review, 2020, 17(17): 22-23, 149. doi: 10.16660/j.cnki.1674-098X.2020.17.022 [7] 马文坡, 练敏隆. "高分四号"卫星凝视相机的技术特点[J]. 航天返回与遥感, 2016, 37(4): 26-31. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG201604004.htmMA Wenpo, LIAN Minlong. Technical characteristics of the gaze camera of Gaofen-4 satellite [J]. Space Return & Remote Sensing, 2016, 37(4): 26-31. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG201604004.htm [8] Global Security. SBIRS GEO-Geostationary Earth Orbit [EB/OL]. http://www.globalsecurity.org/space/systems/sbirs-geo.html, [2021-01-07] (2022-10-25). [9] 张京男. 洛马公司2020年航天发展研究[J]. 中国航天, 2021(1): 20-30. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHT202101005.htmZHANG Jingnan. Lockheed Martin Aerospace development research in 2020 [J]. China Aerospace, 2021(1): 20-30. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHT202101005.htm [10] Lockheed Martin. SBIRS GEO[EB/OL]. https://www.lockheedmartin.com/en-us/products/sbirs.html, [2022-10-25]. [11] U. S. Air Force. Second SBIRS payload completes early on-orbit checkout[EB/OL]. https://www.af.mil/News/Article-Display/Article/123215/second-sbirs-payload-completes-early-on-orbitcheckout, [2008-06-20], (2022-10-25). [12] 白照广, 沈中, 王肇宇. 环境减灾-1A、1B卫星技术[J]. 航天器工程, 2009, 18(6): 1-11. doi: 10.3969/j.issn.1673-8748.2009.06.001BAI Zhaoguang, SHEN Zhong, WANG Zhaoyu. Satellite technology for environmental disaster mitigation[J]. Spacecraft Engineering, 2009, 18(6): 1-11. doi: 10.3969/j.issn.1673-8748.2009.06.001 [13] 王桥, 杨一鹏, 赵少华, 等. 环境减灾卫星在我国生态环境中的应用[J]. 国际太空, 2018(9): 16-19. https://www.cnki.com.cn/Article/CJFDTOTAL-GJTK201809005.htmWANG Qiao, YANG Yipeng, ZHAO Shaohua, et al. Application of environmental disaster reduction satellite in China's ecological environment [J]. International Space Journal, 2018(9): 16-19. https://www.cnki.com.cn/Article/CJFDTOTAL-GJTK201809005.htm [14] 朱仁璋, 丛云天, 王鸿芳, 等. 全球高分光学星概述(二): 欧洲[J]. 航天器工程, 2016, 25(1): 95-118. https://www.cnki.com.cn/Article/CJFDTOTAL-HTGC201601015.htmZHU Renzhang, CONG Yuntian, WANG Hongfang, et al. Global Gaofen optical star overview (II): Europe [J]. Spacecraft Engineering, 2016, 25(1): 95-118. https://www.cnki.com.cn/Article/CJFDTOTAL-HTGC201601015.htm [15] Schull U, Knigge T. Geo-oculus: A mission for real-time monitoring through high resolution imaging from geostationary orbit[C]//EUMETSAT Meteorological Satellite Conference, 2008: 1-8. [16] Oscar. EnMAP HSI instrument specification[EB/OL]. https://space.oscar.wmo.int/instruments/view/hsi_enmap, [2022-04-04]. [17] Stuffler T, Kaufmann C, Hofer S, et al. The EnMAP hyperspectral imager-an advanced optical payload for future applications in Earth observation programmes[J]. Acta Astronautica, 2007, 61(1-6): 115-120. [18] Matsunaga T, Yamamoto S, Kashimura O, et al. Operation plan study for Japanese future hyperspectral mission: HISUI[C]//Proceedings in 34th International Symposium on Remote Sensing of Environment, 2011: 1-3. [19] Arifin S. Potensi pemanfaatan satelit alos-3[J]. Berita Dirgantara, 2015, 16(2): 61-72. [20] 刘银年, 孙德新, 韩波, 等. 资源一号02D卫星可见短波红外高光谱相机研制[J]. 航天器工程, 2020, 29(6): 85-92. https://www.cnki.com.cn/Article/CJFDTOTAL-HTGC202006017.htmLIU Yinian, SUN Dexin, HAN Bo, et al. Development of the visible short-wave infrared hyperspectral camera of Zuiyuan-1 02D satellite [J]. Spacecraft Engineering, 2020, 29(6): 85-92. https://www.cnki.com.cn/Article/CJFDTOTAL-HTGC202006017.htm [21] 童庆禧, 张兵, 张立福. 中国高光谱遥感的前沿进展[J]. 遥感学报, 2016, 20(5): 689-707. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201605003.htmTONG Qingxi, ZHANG Bing, ZHANG Lifu. Advances in hyperspectral remote sensing in China[J]. Journal of Remote Sensing, 2016, 20(5): 689-707. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201605003.htm [22] 孙允珠, 蒋光伟, 李云端, 等. "高分五号"卫星概况及应用前景展望[J]. 航天返回与遥感, 2018, 39(3): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG201803002.htmSUN Y Z, JIANG G W, LI Y W, et al. General situation and application prospect of Gaofen-5 satellite [J]. Space Return & Remote Sensing, 2018, 39(3): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG201803002.htm [23] 刘银年. "高分五号"卫星可见短波红外高光谱相机的研制[J]. 航天返回与遥感, 2018, 39(3): 25-28. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG201803004.htmLIU Yinnian. Development of visible short-wave infrared hyperspectral camera of "Gaofen-5" satellite [J]. Space Return & Remote Sensing, 2018, 39(3): 25-28. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG201803004.htm [24] 王雅鹏. 大气红外甚高分辨率掩星探测仪温压及臭氧廓线反演算法研究[D]. 北京: 中国科学院大学(中国科学院遥感与数字地球研究所), 2017.WANG Yapeng. Research on Inversion algorithm of atmospheric temperature pressure and ozone profile of infrared Very high Resolution occultation Detector[D]. Beijing: University of Chinese Academy of Sciences (Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences), 2017. [25] 孙宇航, 王威卜, 黄启宏, 等. "高分五号"卫星光学遥感载荷的技术创新[J]. 网络安全技术与应用, 2020(3): 111-112. https://www.cnki.com.cn/Article/CJFDTOTAL-WLAQ202003066.htmSUN Yuhang, WANG Weibo, HUANG Qihang, et al. Technology innovation of optical remote sensing payload of Gaofen-5 satellite [J]. Network Security Technology and Application, 2020(3): 111-112. https://www.cnki.com.cn/Article/CJFDTOTAL-WLAQ202003066.htm [26] 侯立周, 徐彭梅, 张玉贵, 等. 大气环境红外甚高光谱分辨率探测仪关键技术[J]. 上海航天, 2019, 36(S2): 117-125. https://www.cnki.com.cn/Article/CJFDTOTAL-SHHT2019S2019.htmHOU Lizhou, XU Pengmei, ZHANG Yugui, et al. Key technologies of infrared very high spectral resolution sounder in atmospheric environment [J]. Shanghai Aerospace, 2019, 36(S2): 117-125. https://www.cnki.com.cn/Article/CJFDTOTAL-SHHT2019S2019.htm [27] 李献球, 李春霞, 蒋东方. 微纳卫星在卫星导航中的应用探讨[J]. 现代导航, 2015, 6(5): 391-395. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDH201505001.htmLI Xianqiu, LI Chunxia, JIANG Dongfang. Discussion on the application of micro-nano satellite in satellite navigation[J]. Modern Navigation, 2015, 6(5): 391-395. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDH201505001.htm [28] Sacchetti A, Cisbani A, Babini G, et al. The Italian Precursor of an Operational Hyperspectral Imaging Mission[M]. Berlin: Springer, 2010: 73-81. -