留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自然环境下拉曼光谱遥测技术及其应用进展

郭一新 金伟其 何玉青 赵曼

郭一新, 金伟其, 何玉青, 赵曼. 自然环境下拉曼光谱遥测技术及其应用进展[J]. 红外技术, 2022, 44(6): 543-559.
引用本文: 郭一新, 金伟其, 何玉青, 赵曼. 自然环境下拉曼光谱遥测技术及其应用进展[J]. 红外技术, 2022, 44(6): 543-559.
GUO Yixin, JIN Weiqi, HE Yuqing, ZHAO Man. Remote Raman Spectroscopy in Natural Environments[J]. Infrared Technology , 2022, 44(6): 543-559.
Citation: GUO Yixin, JIN Weiqi, HE Yuqing, ZHAO Man. Remote Raman Spectroscopy in Natural Environments[J]. Infrared Technology , 2022, 44(6): 543-559.

自然环境下拉曼光谱遥测技术及其应用进展

基金项目: 

国家重点研发计划 2016YFC0800904

详细信息
    作者简介:

    郭一新(1994-),男,博士研究生,主要研究方向为光电检测技术与仪器研究、拉曼光谱技术与仪器、光电图像处理,E-mail:guoyixin94@gmail.com

    通讯作者:

    金伟其(1961-),男,教授,博士生导师,主要从事夜视与红外技术、光电图像处理、光电检测与仪器的研究,E-mail:jinwq@bit.edu.cn

  • 中图分类号: TP3

Remote Raman Spectroscopy in Natural Environments

  • 摘要: 拉曼光谱遥测技术主要用于在安全距离之下对一些危险品、违禁品、变质食品等进行现场快速检测。早期拉曼光谱遥测技术大多采用可见光或近红外激光拉曼光谱技术,为了避免环境光影响,常在实验室或夜间进行。近年来,因日盲紫外激光的拉曼光谱检测具有共振效应强、不受环境光干扰、人眼相对安全等诸多特性逐渐开始被广泛应用。本文在分析自然环境下远程拉曼光谱遥测技术基础原理上,归纳了国内外可见光或近红外激光拉曼光谱遥测技术和国内外紫外激光拉曼光谱遥测技术的研究进展和现状,分析了远程紫外激光拉曼光谱应用在反恐、禁毒和食品安全等领域的优势,最后总结了自然环境下拉曼光谱遥测技术的研究难点和发展趋势。
  • 图  1  早期拉曼系统示意图(激光器/中继光路未画)

    Figure  1.  Schematic diagram of early Raman system (The laser and associated optics are not shown)

    图  2  早期的远程拉曼系统结构设计图

    Figure  2.  Schematic diagram of early remote Raman system

    图  3  夏威夷大学车载远程拉曼光谱检测设备

    Figure  3.  Photograph of the actual remote Raman system on a trolley made by University of Hawaii

    图  4  AOTF和基于AOTF的脉冲激光激发远程单点测量拉曼光谱系统

    Figure  4.  TeO2 non-collinear AOTF and schematic diagrams of single-point, fiber-coupled, stand-off, pulsed Raman AOTF-based systems

    图  5  远程拉曼系统结构示意图

    Figure  5.  Experimental setup used for standoff Raman detection

    图  6  200 m营房里2g TATP探测结果

    Figure  6.  Raman spectra of 2g TATP in the barrack, obtained from 200 m distance through the window

    图  7  远程便携式拉曼光谱仪结构及北极现场

    Figure  7.  Structure of remote portable Raman spectrometer in arctic site

    图  8  系统原理图和实验室原型远程拉曼系统

    Figure  8.  Schematic diagram and laboratory prototype of remote Raman system

    图  9  时间门控拉曼技术原理图

    Figure  9.  Schematic diagram of time-gated Raman technology

    图  10  检测火山喷气远程拉曼系统结构示意图

    Figure  10.  Schematic diagram of remote Raman system for detecting volcanic jet

    图  11  用于远程化学分析的双组分系统,在目标附近使用了紧凑远程Raman+LIBS系统和远距聚焦透镜(L)。(a)用于分析垂直表面目标和(b)结合折叠镜(M) 用于分析地面化学品目标

    Figure  11.  A two-component system for remote chemical analysis, which uses a compact remote Raman+LIBS system and a remote focusing lens (L) near the target. (a) For analyzing vertical surface targets and (b) combined with folding mirror (M) for analyzing ground chemical targets

    图  12  新型空间外差拉曼光谱仪系统示意图

    Figure  12.  Schematic diagram of the new Raman spatial heterodyne spectrometer

    图  13  高光谱远程拉曼成像结构示意图

    Figure  13.  Schematic diagram of hyperspectral long-range Raman imaging

    图  14  超远程拉曼检测系统示意图

    Figure  14.  Schematic diagram of super-remote Raman detection system

    图  15  拉曼检测系统结构示意图和系统实物图

    Figure  15.  Schematic diagram of Raman detection system and photograph of the system

    图  16  公安部一所的拉曼光谱检测仪

    Figure  16.  Raman spectrometer of First Research Institute of the Ministry of Public Security

    图  17  可见光远距离拉曼光谱探测系统

    Figure  17.  Remote Raman system using visible laser

    图  18  卓立汉光手持式拉曼光谱仪

    Figure  18.  Hand-held Raman spectrometer produced by Beijing ZOLIX Instruments Company

    图  19  拉曼与荧光光谱(Laser Line为激光发射源)

    Figure  19.  Raman response and fluorescence spectrum (Laser Line is the response of the laser source)

    图  20  早期266 nm紫外远程拉曼系统结构示意图

    Figure  20.  Schematic diagram of early remote UV(266 nm) Raman system

    图  21  紫外拉曼光谱检测系统原理及实验原型

    Figure  21.  Schematic diagram and prototype of remote UV Raman system

    图  22  测量爆炸物拉曼光谱实验装置及通过特氟龙散射获取拉曼反照率方法

    Figure  22.  Experimental setup and approach for measurement of Raman Albedo using characterized laser return from Teflon surface

    图  23  紫外成像拉曼系统原理图和原型系统

    Figure  23.  Schematic diagram and prototype of the UV standoff Raman imaging system

    图  24  远程深紫外拉曼设备(a)及其结构示意图(b)

    Figure  24.  (a) The standoff Raman apparatus. (b)Sketch of the whole device

    图  25  30 cm远的特氟龙紫外拉曼光谱及人眼安全检测距离

    Figure  25.  Raman spectra of Teflon collected from 30 cm away and eye-safe detection range

    图  26  新型近距人体高能物质拉曼光谱探测装置

    Figure  26.  A new Raman-based apparatus for proximal detection of energetic materials on people

    图  27  远程空间外差拉曼光谱仪,平面分束镜和补偿镜(左)与望远系统相连(右)

    Figure  27.  Schematic of the SHRS with plate beamsplitter and compensator plate (left), coupled to a telescope (right)

    图  28  便携式深紫外(DUV)远程拉曼探测仪及其检测结果

    Figure  28.  Portable stand-off deep-UV(DUP) Raman spectrometer and Raman detecting results

    图  29  深紫外拉曼隔离宽场成像光谱仪

    Figure  29.  Schematic of the standoff deep UV hyperspectral Raman imaging spectrometer

    图  30  基于门控拉曼光谱的爆炸物检测系统

    Figure  30.  Schematic of time-gated stand-off detection system for detecting explosive materials

    图  31  紫外共振拉曼三联光谱仪及其组成

    Figure  31.  Appearance and schematic of UV Raman triple cascade spectrometer

    图  32  远程物质LIBS与拉曼探测实验平台

    Figure  32.  Remote LIBS and Raman detection experimental platform

    图  33  LIBS+拉曼光谱仪系统示意图

    Figure  33.  Schematic diagram of LIBS+Raman spectrometer system

    图  34  紧凑型近端紫外拉曼光谱仪示意图

    Figure  34.  Schematic diagram of compact near-field ultraviolet Raman spectrometer

    图  35  三通道紫外拉曼光谱检测仪及其拉曼光谱

    Figure  35.  Three-channel UV Raman spectrometer and the Raman spectrum showing on the software

  • [1] Guozhen W. Raman Spectroscopy: An Intensity Approach[M]. Beijing: Science Press, 2016.
    [2] Colthup N. Introduction to Infrared and Raman Spectroscopy[M]. Amsterdam: Elsevier, 2012.
    [3] 肖新月, 余振喜. 化学药品对照品图谱集: 红外、拉曼、紫外光谱[M]. 北京: 中国医学科技出版社, 2014.

    XIAO Xinyue, YU Zhenxi. Atlas of Chemical Reference Substances: Infrared, Raman and UV Spectra[M]. Beijing: The Medicine Science and Technology Press of China, 2014.
    [4] Okuno M, Hamaguchi H. Multifocus confocal Raman microspectroscopy for fast multimode vibrational imaging of living cells[J]. Optics Letters, 2012, 35(24): 4096-4098.
    [5] Schlücker S, Kiefer W. Surface enhanced Raman spectroscopy: analytical, biophysical and life science applications[J]. Analytical and Bioanalytical Chemistry, 2011, 401(8): 2329-2330. doi:  10.1007/s00216-011-5321-8
    [6] Cooney J. Satellite observations using Raman component of laser backscatter[C]//Proceedings of the Symposium on Electromagnetic Sensing of the Earth from Satellites, New York: Polytechnic Institute of Brooklyn Press, 1967, 1-10.
    [7] Leonared D A. Observation of Raman scattering from the atmosphere using a pulsed nitrogen ultraviolet laser[J]. Nature, 1967, 216(5111): 142-143. doi:  10.1038/216142a0
    [8] Hirschfeld T. Range independence of signal in variable focus remote Raman spectrometry[J]. Applied Optics, 1974, 13(6): 1435-1437. doi:  10.1364/AO.13.001435
    [9] Raymond M. Laser Remote Sensing: Fundamentals and Applications[M]. New York: John Wiley & Sons, 1984.
    [10] Wu M, Ray M, Fung K H, et al. Stand-off detection of chemicals by UV Raman spectroscopy[J]. Applied Spectroscopy, 2000, 54(6): 800-806. doi:  10.1366/0003702001950418
    [11] Ray M D, Sedlacek A J, WU M. Ultraviolet mini-Raman lidar for stand-off, in situ identification of chemical surface contaminants[J]. Review of Scientific Instruments, 2000, 71(9): 3485-3489. doi:  10.1063/1.1288255
    [12] Wallin S, Pettersson A, Östmark H, et al. Laser-based stand-off detection of explosives: a critical review[J]. Analytical and Bioanalytical Chemistry, 2009, 395(2): 259-274. doi:  10.1007/s00216-009-2844-3
    [13] Angel S M, Kulp T J, Vess T M. Remote-Raman spectroscopy at intermediate ranges using low-power cw lasers[J]. Applied Spectroscopy, 1992, 46(7): 1085-1091. doi:  10.1366/0003702924124132
    [14] Sharma S K, Angel S M, Ghosh M, et al. Remote pulsed laser Raman spectroscopy system for mineral analysis on planetary surfaces to 66 meters[J]. Applied Spectroscopy, 2002, 56(6): 699-705. doi:  10.1366/000370202760077630
    [15] Sharma S K, Lucey P G, Ghosh M, et al. Stand-off Raman spectroscopic detection of minerals on planetary surfaces[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2003, 59(10): 2391-2407. doi:  10.1016/S1386-1425(03)00080-5
    [16] Misra A K, Sharma S K, Chio C H, et al. Pulsed remote Raman system for daytime measurements of mineral spectra[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2005, 61(10): 2281-2287. doi:  10.1016/j.saa.2005.02.027
    [17] Misra A K, Sharma S K, Lucey P G. Remote Raman spectroscopic detection of minerals and organics under illuminated conditions from a distance of 10 m using a single 532 nm laser pulse[J]. Applied Spectroscopy, 2006, 60(2): 223-228. doi:  10.1366/000370206776023412
    [18] Carter J C, Scaffidi J, Burnett S, et al. Stand-off Raman detection using dispersive and tunable filter based systems[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2005, 61(10): 2288-2298. doi:  10.1016/j.saa.2005.02.028
    [19] Carter J C, Angel S M, Lawrence-Snyder M, et al. Stand-off detection of high explosive materials at 50 meters in ambient light conditions using a small Raman instrument[J]. Applied Spectroscopy, 2005, 59(6): 769-775. doi:  10.1366/0003702054280612
    [20] Pettersson A, Johansson I, Wallin S, et al. Near Real-Time stand-off detection of explosives in a realistic outdoor environment at 55 m distance[J]. Propellants Explosives Pyrotechnics, 2009, 34(4): 297-306. doi:  10.1002/prep.200800055
    [21] Fleger Y, Nagli L, Gaft M, et al. Narrow gated Raman and luminescence of explosives[J]. Journal of Luminescence, 2009, 129(9): 979-983. doi:  10.1016/j.jlumin.2009.04.008
    [22] Sharma S K, Misra A K, Clegg S M, et al. Time-resolved remote Raman study of minerals under supercritical CO2 and high temperatures relevant to Venus exploration[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2010, 368(1922): 3167-3191. doi:  10.1098/rsta.2010.0034
    [23] Ramirez-Cedeno M L, Ortiz-Rivera W, Pacheco-Londono L C, et al. Remote detection of hazardous liquids concealed in glass and plastic containers[J]. IEEE Sensors Journal, 2010, 10(3): 693-698. doi:  10.1109/JSEN.2009.2036373
    [24] Pettersson A, Wallin S, Östmark H, et al. Explosives stand-off detection using Raman spectrpscopy: from bulk towards trace detection[C]//Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XV, 2010: 7664: 76641K.
    [25] Rull F, Vegas A, Sansano A, et al. Analysis of arctic ices by remote Raman spectroscopy[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2011, 80(1): 148-155. doi:  10.1016/j.saa.2011.04.007
    [26] Chung J H, Cho S G. Nanosecond gated Raman spectroscopy for standoff detection of hazardous materials[J]. Bulletin- Korean Chemical Society, 2014, 35(12): 3547-3552. doi:  10.5012/bkcs.2014.35.12.3547
    [27] Gulati K K, Gambhir V, Reddy M N. Detection of nitro-aromatic compound in soil and sand using time gated Raman spectroscopy[J]. Defence Science Journal, 2017, 67(5): 588-591. doi:  10.14429/dsj.67.10290
    [28] Guimbretière, G, Duraipandian S, Ricci T. Field remote stokes/anti-stokes Raman characterization of sulfur in hydrothermal vents[J]. Journal of Raman Spectroscopy, 2018, 49: 1385-1394. doi:  10.1002/jrs.5378
    [29] Kubitza S, Schröder S, Rammelkamp K, et al. Evaluation of close-up remote cw-Raman spectroscopy for in-situ planetary exploration[C]//50th Lunar and Planetary Science Conference, 2019, 2132: 2421-2425.
    [30] Misra A K, Acosta-Maeda T E, Porter J N, et al. A two components approach for long range remote Raman and laser-induced breakdown (LIBS) spectroscopy using low laser pulse energy[J]. Applied Spectroscopy, 2019, 73(3): 320-328. doi:  10.1177/0003702818812144
    [31] Egan M J, Acosta-Maeda T E, Angel S M, et al. One-mirror, one-grating spatial heterodyne spectrometer for remote-sensing Raman spectroscopy[J]. Journal of Raman Spectroscopy, 2020, 51: 1794-1801. doi:  10.1002/jrs.5788
    [32] Gasser C, González-Cabrera M, Ayora-Cañada M J, et al. Comparing mapping and direct hyperspectral imaging in stand-off Raman spectroscopy for remote material identification[J]. Journal of Raman Spectroscopy, 2019, 50: 1034-1043. doi:  10.1002/jrs.5607
    [33] Misra A K, Acosta-Maeda T E, Porter J N, et al. Remote Raman detection of chemicals from 1752 m during afternoon daylight[J]. Applied Spectroscopy, 2019, 74(2): 233-240.
    [34] Sandford M W, Misra A K, Acosta-Maeda T E, et al. Detecting minerals and organics relevant to planetary exploration using a compact portable remote Raman system at 122 meters[J]. Applied Spectroscopy, 2021, 75(3): 299-306. doi:  10.1177/0003702820943669
    [35] 刘鑫, 薛晨阳, 熊继军, 等. 微型远程拉曼在深空探测中应用的可行性研究[C]//工程科技Ⅱ辑, 2008: 187-191.

    LIU Xin, XUE Chenyang, XIONG Jijun, et al. Feasibility study of micro remote Raman system for deep space detection[C]//Engineering Technology Part Ⅱ, 2008: 187-191.
    [36] 郝凤龙, 姜玲玲, 于海辉, 等. 基于拉曼光谱技术的毒品检测仪器研究[J]. 国外电子测量技术, 2016, 35(12): 40-43. doi:  10.3969/j.issn.1002-8978.2016.12.010

    HAO F, JIANG L, YU H, et al. Research on drug detecting instrument based on raman spectroscopy[J]. Foreign Electronic Measurement Technology, 2016, 35(12): 40-43. doi:  10.3969/j.issn.1002-8978.2016.12.010
    [37] 张丹. 用于火星表面物质探测的拉曼光谱技术研究[D]. 西安: 中科院研究生院西安光机所, 2015.

    ZHANG D. Study of Raman Spectrum Technique for Material Detection on Mars Surface[D]. Beijing: University of Chinese Academy of Sciences, 2015.
    [38] 张莉, 郑海洋, 王颖萍, 等. 远距离探测拉曼光谱特性[J]. 物理学报, 2016, 65(5): 134-143. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201605018.htm

    ZHANG L, ZHENG H Y, WANG Y P, et al. Remote Raman spectra characteristics[J]. Acta Phys. Sin, 2016, 65(5): 134-143. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201605018.htm
    [39] 胡广骁, 熊伟, 罗海燕, 等. 用于远程探测的空间外差拉曼光谱技术研究[J]. 光谱学与光谱分析, 2016, 36(12): 3951-3957. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201612030.htm

    HU G X, XIONG W, LUO H Y, et al. The research of spatial heterodyne Raman spectroscopy with standoff detection[J]. Spectroscopy and Spectral Analysis, 2016, 36(12): 3951-3957. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201612030.htm
    [40] 姚齐峰, 王帅, 娄小平, 等. 基于远程拉曼光谱的物质检测研究[J]. 工具技术, 2017, 51(9): 135-138. doi:  10.3969/j.issn.1000-7008.2017.09.034

    YAO Q F, WANG S, LOU X P, et al. Stand-off Raman spectrum detection for explosive materials[J]. Tool Engineering, 2017, 51(9): 135-138. doi:  10.3969/j.issn.1000-7008.2017.09.034
    [41] Mccain S T, Guenther B D, Brady D J, et al. Coded-aperture Raman imaging for standoff explosive detection[C]//Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XⅢ, 2012, 8358: 83580Q.
    [42] Chirico R, Almaviva S, Botti S, et al. Stand-off detection of traces of explosives and precursors on fabrics by UV Raman spectroscopy[C]// Optics and Photonics for Counterterrorism, Crime Fighting, and Defence Ⅷ, 2012, 8546: 8546: 283-287.
    [43] Fulton J. Remote detection of explosives using Raman spectroscopy[C]//Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XⅡ, 2011, 8018(1): 413-413.
    [44] Almaviva S, Angelni F, Chirico R, et al. Eye-safe UV Raman spectroscopy for remote detection of explosives and their precursors in fingerprint concentration[C]//Optics and Photonics for Counterterrorism, Crime Fighting, and Defence X; and Optical Materials and Biomaterials in Security and Defence Systems Technology XI, 2014, 9253: 925303.
    [45] Glimtoft M, Bââth P, Saari H, et al. Towards eye-safe standoff Raman imaging systems[C]//Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XIX, 2014, 9072: 907210.
    [46] Carroll J A, Izake E L, Cletus B, et al. Eye-safe UV stand-off Raman spectroscopy for the ranged detection of explosives in the field[J]. Journal of Raman Spectroscopy, 2015, 46(3): 333-338. doi:  10.1002/jrs.4642
    [47] Sharma S K, Ismail S, Angel S M, et al. Remote Raman and laser-induced fluorescence (RLIF) emission instrument for detection of mineral, organic, and biogenic materials on Mars to 100 meters radial distance[C]//Instruments, Science, and Methods for Geospace and Planetary Remote Sensing, 2004, 5660: 128-138.
    [48] Gaft M, Nagli L. UV gated Raman spectroscopy for standoff detection of explosives[J]. Optical Materials, 2008, 30(11): 1739-1746. doi:  10.1016/j.optmat.2007.11.013
    [49] Yellampalle B, Lemoff B E. Raman albedo and deep-UV resonance Raman signatures of explosives[C]//Active and Passive Signatures IV, 2013, 8734: 87340G.
    [50] 中国国防科技信息中心. 美拟研发小型高效紫外激光器用于生化探测[N/OL]. [2014-03-06]. 中国新闻网, http://www.chinanews.com/mil/2014/03-06/5916245.Shtml.

    China Defense Science and Technology Information Center. U.S. intends to develop a small high-efficiency ultraviolet laser for biochemical detection[N/OL]. [2014-03-06]. China News, http://www.chinanews.com/mil/2014/03-06/5916245.shtml.
    [51] Kozu T, Yamaguchi M, Kawaguchi M, et al. Evaluating of diamond like carbon using deep UV Raman spectroscopy[J]. Integrated Ferroelectrics, 2013, 157(1): 147-156.
    [52] Skulinova M, Lefebvre C, Sobron P, et al. Time-resolved stand-off UV-Raman spectroscopy for planetary exploration[J]. Planetary and Space Science, 2014, 92: 88-100. doi:  10.1016/j.pss.2014.01.010
    [53] Almaviva S, Chirico R, Nuvoli M, et al. A new eye-safe UV Raman spectrometer for the remote detection of energetic materials in fingerprint concentrations: characterization by PCA and ROC analyzes[J]. Talanta, 2015, 144(8): 420.
    [54] Chirico R, Almaviva S, Colao F, et al. Proximal detection of traces of energetic materials with an eye-safe UV Raman prototype developed for civil applications[J]. Sensors, 2016, 16(1): 8.
    [55] Lamsal N, Barnett P, Angel S M, et al. Remote UV Raman spectroscopy for planetary exploration using a miniature spatial heterodyne Raman spectrometer[C]//Lunar and Planetary Science Conference, 2016: 1500-1510.
    [56] Lamsal N, Sharma S K, Acosta T E, et al. Ultraviolet stand-off Raman measurements using a gated spatial heterodyne Raman spectrometer[J]. Applied Spectroscopy, 2016, 70(4): 666-675. doi:  10.1177/0003702816631304
    [57] Hopkins A J, Cooper J L, Profeta L T M, et al. Portable deep-ultraviolet (DUV) Raman for standoff detection[J]. Applied Spectroscopy, 2016, 70(5): 861-873. doi:  10.1177/0003702816638285
    [58] Hufziger K T, Bykov S V, Asher S A. Ultraviolet Raman wide-field hyperspectral imaging spectrometer for standoff trace explosive detection[J]. Applied Spectroscopy, 2017, 71(2): 173-185. doi:  10.1177/0003702816680002
    [59] Shkolyar S, Eshelman E J, Farmer J D, et al. Detecting kerogen as a biosignature using colocated UV time-gated Raman and fluorescence spectroscopy[J]. Astrobiology, 2018, 18(4): 431-453. doi:  10.1089/ast.2017.1716
    [60] Gulati K K, Gulia S, Kumar N, et al. Real-time stand-off detection of improvised explosive materials using time-gated UV-Raman spectroscopy[J]. Pramana, 2019, 92(2): 1-5.
    [61] Cantu L, Gallo E, Duschek F. Remote Raman scattering detection of explosives[C]//ODAS (ONERA-DLR Aerospace Symposium)-MOTAR (Measurement and Optical Techniques for Aerospace Research), 2021: (DOI: https://elib.dlr.de/141626/).https://www.researchgate.net/publication/351072675_REMOTE_RAMAN_SCATTERING_DETECTION_OF_EXPLOSIVES.
    [62] Gallo E, Duschek F. Deep-UV remote Raman detection of chlorine[C]// OSA Optical Sensors and Sensing Congress, 2021: DOI: https://elib.dlr.de/143249/.
    [63] 卓立汉光. 紫外共振拉曼光谱系统—UV Raman100[EB/OL]. 仪器信息网, http://www.instrument.com.cn/netshow/SH100487/C95891.htm, 2018.

    Zolix Intruments CO., LTD. Ultraviolet Resonance Raman Spectroscopy System—UV Raman100[EB/OL]. Instrument, http://www.instrument.com.cn/netshow/SH100487/C95891.htm, 2018.
    [64] 黄保坤, 安虹宇, 范峰滔. 小型紫外拉曼光谱仪[J]. 光散射学报, 2017, 29(4): 348-353. https://www.cnki.com.cn/Article/CJFDTOTAL-GSSX201704011.htm

    HUANG B K, AN H Y, FAN F T. Mini UV Raman spectrometer[J]. The Journal of Light Scattering, 2017, 29(4): 348-353. https://www.cnki.com.cn/Article/CJFDTOTAL-GSSX201704011.htm
    [65] 王祺. 激光诱导击穿光谱和拉曼光谱远程探测系统研究[D]. 深圳: 深圳大学, 2016.

    WANG Q. Study of Combined Remote Laser Induced Breakdown Spectroscopy And Raman Spectroscopy Detection System[D]. Shenzhen: Shenzhen University. 2016.
    [66] ZHANG W, ZHOU R, LIU K, et al. Sulfur determination in laser-induced breakdown spectroscopy combined with resonance Raman scattering[J]. Talanta, 2020, 216: 120968-120976. doi:  10.1016/j.talanta.2020.120968
    [67] SI G, FANGY, LIU J, et al. A new eye-safe compact UV-Raman spectroscopy setup for the proximal detection of hazardous chemicals[C]//AOPC 2021: Optical Spectroscopy and Imaging, 2021, 12064: 99-105.
    [68] Hagen N, Brady D J. Coded-aperture DUV spectrometer for stand-off Raman spectroscopy[C]//Next-Generation Spectroscopic Technologies Ⅱ, 2009, 7319: 73190D.
    [69] Yellampalle B, Martin R, Witt K, et al. Performance comparison of single and dual-excitation-wavelength resonance-Raman explosives detectors[C]//Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XVⅢ, 2017, 10183: 101830E.
  • 加载中
图(35)
计量
  • 文章访问数:  240
  • HTML全文浏览量:  60
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-03
  • 修回日期:  2022-05-30
  • 刊出日期:  2022-06-20

目录

    /

    返回文章
    返回