留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

点状远红外发射源及其组合的辐照特性

单绍琪 伍锦鸣 文雅欣 李汴生 郭晓雪 黎玉茗 阮征 李丹丹 吴子东

单绍琪, 伍锦鸣, 文雅欣, 李汴生, 郭晓雪, 黎玉茗, 阮征, 李丹丹, 吴子东. 点状远红外发射源及其组合的辐照特性[J]. 红外技术, 2021, 43(1): 79-88.
引用本文: 单绍琪, 伍锦鸣, 文雅欣, 李汴生, 郭晓雪, 黎玉茗, 阮征, 李丹丹, 吴子东. 点状远红外发射源及其组合的辐照特性[J]. 红外技术, 2021, 43(1): 79-88.
SHAN Shaoqi, WU Jinmin, WEN Yaxin, LI Biansheng, GUO Xiaoxue, LI Yuming, RUAN Zheng, LI Dandan, WU Zidong. Irradiation Characteristics of Point-shaped Far-Infrared Emission Source and Combination[J]. Infrared Technology , 2021, 43(1): 79-88.
Citation: SHAN Shaoqi, WU Jinmin, WEN Yaxin, LI Biansheng, GUO Xiaoxue, LI Yuming, RUAN Zheng, LI Dandan, WU Zidong. Irradiation Characteristics of Point-shaped Far-Infrared Emission Source and Combination[J]. Infrared Technology , 2021, 43(1): 79-88.

点状远红外发射源及其组合的辐照特性

基金项目: 

国家重点研发计划项目 2017YFD0400400

企业合作科技项目 2018440000340003

详细信息
    作者简介:

    单绍琪(1994-),女,浙江绍兴人,硕士,食品加工与保藏

    通讯作者:

    李汴生(1962-),男,博士,教授,食品加工与保藏。E-mail: febshli@scut.edu.cn

  • 中图分类号: TN219

Irradiation Characteristics of Point-shaped Far-Infrared Emission Source and Combination

  • 摘要: 本文先探究3种材料的远红外辐照特性以及质量、辐照面积以及金属对远红外辐照的影响,再以点状远红外发射源为研究对象,研究了点状远红外发射源的不同影响因素及其功率密度分布规律。结果表明:远红外烧结材料的功率密度最高,陶瓷材料次之,玻璃材料最低,并确定了远红外材料功率密度的影响因素有质量、辐照面积以及金属外罩;点状远红外发射源的功率密度随着温度的升高而升高,其功率密度峰值对应的波长主要在λ=6, 10 mm附近。点状远红外发射源其功率密度呈放射状分布,在法向距离L=0~3 cm、平面内半径r=0~1 cm范围内,远红外功率密度衰减率较低,并建立了功率密度E与法向距离L的数学模型。最后据此设计了一种均匀场能的远红外发射源组合模型,验证实验表明该模型场能分布均匀,达到预期。
  • 图  1  点状远红外发射源

    Figure  1.  Point-Shaped Far-Infrared Emission Source

    图  2  不同远红外材料

    Figure  2.  Different far infrared materials

    (a)Far-infrarpd sintered materials m=5.009g (b)Ceramic fragments m=5.544 g (c)Glass fragments m=5.569 g

    图  3  ① 号远红外发射源功率密度测定定位

    Figure  3.  Power density measurement location of far-infrared emission source①

    图  4  不同远红外材料的功率密度(λ=9μm,L=1 cm)

    Figure  4.  Power density of different far infrared materials(λ=9μm, L=1 cm)

    图  5  相同辐照面积下质量对远红外材料功率密度的影响(λ=9μm,L=1 cm)

    Figure  5.  The effect of mass on the power density of far infraredmaterials under the same irradiation area(λ=9μm, L=1 cm)

    Note:M1=3.007 g; M2=6.000 g; M3=9.006 g a, b: Significant difference in different groups at the same temperature, p < 0.05

    图  6  相同质量下辐照面积对远红外材料功率密度的影响(λ=9μm,L=1 cm)

    Figure  6.  The effect of irradiation area on the power density of far-infrared materials at the same mass(λ=9μm, L=1 cm)

    Note:D1=2 cm; D2=3 cm; D3=4 cm a, b, c: Significant difference in different groups at the same temperature, p < 0.05

    图  7  不同远红外发射源功率密度比较(λ=9μm,L=1 cm)

    Figure  7.  Power density comparison of different far infrared emission sources(λ=9μm, L=1 cm)

    图  8  不同温度下①号远红外发射源在不同波长下的功率密度

    Figure  8.  The power density of far-infrared emitters① at different wavelengths and temperatures

    图  9  不同法向距离下①号远红外发射源功率密度(λ=9μm,r=0 cm)

    Figure  9.  Power density of far-infrared emitters① at different vertical distances(λ=9μm,r=0 cm)

    图  10  70℃下远红外发射源①法向辐照强度的拟合结果(λ=9μm)

    Figure  10.  Fitting result of the normal radiation intensity of the far-infrared emission source at 70℃ (λ=9μm)

    图  11  不同半径下远红外发射源功率密度(λ=9μm、L=6 cm)

    Figure  11.  Power density of far-infrared emitters① with different radii(λ=9μm、L=6 cm)

    图  12  点状远红外发射源功率分布示意图

    注:虚线同心圆为L=3 cm时功率密度分布示意;虚线箭头表示远红外射线  单位:cm

    Figure  12.  Power distribution of point-shaped far-infrared emission source

    Note: The dashed arrow indicates far infrared rays when the dashed concentric circle is L=3 cm, the distribution of far-infrared rays is shown

    图  13  两个①号远红外发射源组合功率密度分布

    Figure  13.  Combined power density distribution of two No. ① far infrared emission sources

    图  14  组合式远红外发射源的分布模型

    Figure  14.  Distribution model of combined far-infrared emission source

    Note: A is the far-infrared emission source ① Unit: cm

    图  15  组合式远红外发射源功率密度测定点分布

    Figure  15.  Distribution of power density measurement points of combined far-infrared emission source

    图  16  组合式远红外发射源功率密度分布(λ=9μm、T=90℃、L=3 cm)

    Figure  16.  Power density distribution of combined far-infrared emission source(λ=9μm、T=90℃、L=3 cm)

    表  1  r=0 cm下①号红外发射源功率密度的衰减率

    Table  1.   The decay rate of power density of far-infraredemission source① at r=0 cm

    Temperature/℃ 110 100 90 80 70
    Attenuation rate/% L=1 cm 0.00 0.00 0.00 0.00 0.00
    L=2 cm 6.29 8.00 0.42 1.58 0.94
    L=3 cm 11.08 10.98 5.95 7.96 6.42
    L=4 cm 31.19 30.78 27.88 29.74 30.36
    L=5 cm 44.22 44.83 42.59 43.78 43.81
    L=6 cm 55.84 54.88 52.93 52.55 51.61
    L=7 cm 59.36 59.61 57.50 58.64 58.59
    L=8 cm 65.61 65.76 63.94 65.05 65.34
    L=9 cm 70.38 69.27 67.73 68.46 67.09
    下载: 导出CSV

    表  2  不同温度下远红外发射源①法向辐照强度的拟合结果(λ=9 µm)

    Table  2.   Fitting results of far-infrared emission source ① normalradiation intensity attenuation at different temperatures(λ=9μm)

    Irradiation temperature/℃ I Attenuation coefficient σ Goodness of fit R2
    110 0.03248 -20.04 0.9600
    100 0.02705 -20.22 0.9637
    90 0.02276 -20.13 0.9697
    80 0.01826 -20.15 0.9675
    70 0.01428 -20.20 0.9748
    下载: 导出CSV

    表  3  L=6 cm下远红外发射源功率密度的衰减率

    Table  3.   Decay rate of power density of rar-infrared emissionsource① at L=6 cm

    Temperature/℃ 110 100 90 80 70
    Attenua-tion rate/% r=1 cm 0.00 0.00 0.00 0.00 0.00
    r=2 cm 26.82 28.97 30.10 30.99 31.41
    r=3 cm 43.44 43.98 44.15 44.59 44.88
    r=4 cm 71.54 68.26 67.22 67.39 66.54
    r=5 cm 84.88 78.75 73.99 72.10 71.61
    r=6 cm 96.86 96.11 95.53 94.51 94.05
    r=7 cm 100.00 100.00 100.00 100.00 100.00
    r=8 cm 100.00 100.00 100.00 100.00 100.00
    下载: 导出CSV
  • [1] 君轩.红外和远红外技术[J].世界橡胶工业, 2009, 36(1): 43-45. doi:  10.3969/j.issn.1671-8232.2009.01.011

    JUN Xuan. Infrared and far infrared technology[J]. World Rubber Industry, 2009, 36(1): 43-45. doi:  10.3969/j.issn.1671-8232.2009.01.011
    [2] 魏忠彩, 孙传祝, 张丽丽, 等.红外干燥技术在果蔬和粮食加工中的应用[J].食品与机械, 2016, 32(1): 217-220. https://www.cnki.com.cn/Article/CJFDTOTAL-SPJX201601057.htm

    WEI Zhongcai, SUN Zhuanzhu, ZHANG Lili, et al. Progress of infrared drying technology applied processing of fruits and vegetables and grain[J]. Food and Machinery, 2016, 32(1): 217-220. https://www.cnki.com.cn/Article/CJFDTOTAL-SPJX201601057.htm
    [3] 申彩英, 李峰, 朴在林.香菇远红外连续干燥主要工艺参数的试验研究[J].农机化研究, 2006(9): 132-134. doi:  10.3969/j.issn.1003-188X.2006.09.043

    SHEN Caiying, LI Feng, PIAO Zailin. Research on the major technical parameters of far infrared dryer formushroom drying[J]. Agricultural Mechanization Research, 2006(9): 132-134. doi:  10.3969/j.issn.1003-188X.2006.09.043
    [4] 胡洁.果蔬远红外真空干燥技术研究[D].无锡: 江南大学, 2008.

    HU Jie. Research on Far-Infrared Vacuum Drying of Vegetables And Fruits[D]. Wuxi: Jiangnan university, 2008.
    [5] 罗剑毅.稻谷的远红外干燥特性和工艺的实验研究[D].杭州: 浙江大学, 2006.

    LUO Jianyi. Study on Drying Characteristic And Technology of Paddy Dried on Far-Infrared[D]. Hangzhou: Zhejiang university, 2006.
    [6] 李武强, 黄晓鹏, 马嘉伟, 等.响应面法优化桔梗切片远红外干燥工艺[J].林业机械与木工设备, 2019, 47(8): 47-51. https://www.cnki.com.cn/Article/CJFDTOTAL-LJMG201908012.htm

    LI Wuqiang, HUANG Xiaopeng, MA Jiawei, et al. Optimization of far infrared drying process of platycodongrandiflorum slice by response surface methodology[J]. Forestry Machinery and Woodworking Equipment, 2019, 47(8): 47-51. https://www.cnki.com.cn/Article/CJFDTOTAL-LJMG201908012.htm
    [7] 刘宗博, 张钟元, 李大婧, 等.双孢菇远红外干燥过程中内部水分的变化规律[J].食品科学, 2016, 37(9): 82-86. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKX201609017.htm

    LIU Zongbou, ZHANG Zhongyuan, LI Dajing, et al. Analysis of moisture change during far-infrared drying of agaricus bisporus[J]. Food Science, 2016, 37(9): 82-86. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKX201609017.htm
    [8] XU C, LI Y, YU H. Effect of far-infrared drying on the water state and glass transition temperature in carrots[J]. Journal of Food Engineering, 2014, 136: 42-47. doi:  10.1016/j.jfoodeng.2014.03.022
    [9] Nathakaranakule A, Jaiboon P, Soponronnarit S. Far-infrared radiation assisted drying of longan fruit[J]. Journal of Food Engineering, 2010, 100(4): 662-668. doi:  10.1016/j.jfoodeng.2010.05.016
    [10] GONG Y J, SUI Y, HAN C S, et al. Drying Ginseng Slices Using a Combination of Microwave and Far-Infrared Drying Techniques[J]. Journal of Biosystems Engineering, 2016, 41(1): 34-42. doi:  10.5307/JBE.2016.41.1.034
    [11] GUO S, CHI Y, GUO G. Recent achievements on middle and far-infrared second-order nonlinear optical materials[J]. Coordination Chemistry Reviews, 2017, 335: 44-57. doi:  10.1016/j.ccr.2016.12.013
    [12] LEE S, KIM Y, KANG S. Far-infrared emission of Ti-based oxides[J]. Journal of Molecular Structure, 2011, 987(1-3): 86-90. doi:  10.1016/j.molstruc.2010.11.063
    [13] 林少波, 郭小华, 毛海波, 等.竹炭远红外比辐射率测试条件研究[J].浙江林业科技, 2016(3): 28-30. doi:  10.3969/j.issn.1001-3776.2016.03.006

    LIN Shaobo, GUO Xiaohua, MAO Haibo, et al. Determination on far-infrared radiance of bamboo carbon under different condition[J]. Zhejiang Forestry Science and Technology, 2016(3): 28-30. doi:  10.3969/j.issn.1001-3776.2016.03.006
    [14] 修大鹏, 许建华, 周吉学, 等.远红外辐射黑瓷板研制及其性能研究[J].红外与激光工程, 2018, 47(11): 168-172. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201811024.htm

    XIU Dapeng, XU Jianhua, ZHOU Jixue, et al. Research on development and its performance of far-infraredradiation black porcelain plate[J]. Infrared and Laser Engineering, 2018, 47(11): 168-172. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201811024.htm
    [15] YAO Longyang, FAN Liuping, DUAN Zhenhua. Effect of different pretreatments followed by hot-air and far-infrared drying on the bioactive compounds, physicochemical property and microstructure of mango slices[J]. Food Chemistry, 2020, 305: 125477. doi:  10.1016/j.foodchem.2019.125477
    [16] 赵丽娟, 王丹丹, 李建国, 等.枸杞真空远红外干燥特性及品质[J].天津科技大学学报, 2017, 32(5): 17-22. https://www.cnki.com.cn/Article/CJFDTOTAL-TQYX201705004.htm

    ZHAO Lijuan, WANG Dandan, LI Jianguo, et al. Drying characteristics and product quality of lyciumbarbarumin vacuum far-infrared drying process[J]. Journal of Tianjin University of Science and Technology, 2017, 32(5): 17-22. https://www.cnki.com.cn/Article/CJFDTOTAL-TQYX201705004.htm
    [17] 黄飞, 杨涛, 徐坤.远红外涂料在烟叶烤房中的应用[J].农业科技与装备, 2010(6): 9-12, 16. https://www.cnki.com.cn/Article/CJFDTOTAL-NYJD201006006.htm

    HUANG Fei, YANG Tao, XU Kun. The application of far-iR coating during the flue-cured tobacco curing[J]. Agricultural Science and Technology and Equipment, 2010(6): 9-12, 16. https://www.cnki.com.cn/Article/CJFDTOTAL-NYJD201006006.htm
    [18] LIU J, MENG J, LIANG J, et al. Effect of far infrared radiation ceramics containing rare earth additives on surface tension of water[J]. Journal of Rare Earths, 2014, 32(9): 890-894.
    [19] 董宏宇.谷物干燥的红外辐射陶瓷材料及红外干燥机理研究[D].长春: 吉林大学, 2008.

    DONG Hongyu. Study on Infrared Ceramics Material and Drying Mechanism for Grain Drying[D]. Changchun: Jilin University, 2008.
    [20] Mongpraneet S, Abe T, Tsurusaki T. Accelerated drying of welsh onion by far infrared radiation under vacuum conditions[J]. Elsevier, 2002, 55(2): 147-156.
    [21] 文雅欣.远红外辐照-热风干燥八角的动力学及品质变化研究[D].广州: 华南理工大学, 2019.

    WEN Yayin. Study on kinetics and quality changes of illicium verum by far infrared radiation-hot Air (FIR-HA) drying[D]. Guangzhou: South China University of Technology, 2019.
    [22] 万江静, 郑霞, 高振江, 等.红枣片远红外辐射干燥的干燥特性及V_C变化[J].食品工业科技, 2016, 37(8): 110-115. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKJ201608016.htm

    WAN Jiangjing, ZHENG Xia, GAO Zhenjiang, et al. Far-infrared drying characteristics and the changes of VC of red jujube sheet[J]. Food Industry Technology, 2016, 37(8): 110-115. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKJ201608016.htm
    [23] 郭晨光..基于光线跟踪的高真实感红外三维场景仿真方法研究[D].西安: 西安电子科技大学, 2013.

    GUO Chenguang. Research on Method of High Realisttic Infrared Scence Simulation System Based on Ray Tracing[D]. Xi'an: Xi'an University of Electronic Science and Technology, 2013.
    [24] 贾光亮, 宋雨宸.基于MODTRAN的红外大气透过率计算方法研究[J].电子世界, 2018(1): 71-72. https://www.cnki.com.cn/Article/CJFDTOTAL-ELEW201801043.htm

    JIA Guangliang, SONG Yuchen. Research on the calculation method of infrared atmospheric transmittance based on MODTRAN[J]. Electronic World, 2018(1): 71-72. https://www.cnki.com.cn/Article/CJFDTOTAL-ELEW201801043.htm
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  208
  • HTML全文浏览量:  130
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-24
  • 修回日期:  2020-12-24
  • 刊出日期:  2021-01-20

目录

    /

    返回文章
    返回