留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于光机集成分析的火情监察红外变焦镜头主动消热差设计

尹晶 刘旭 徐晓影 崔艳群 王强 郭富城

尹晶, 刘旭, 徐晓影, 崔艳群, 王强, 郭富城. 基于光机集成分析的火情监察红外变焦镜头主动消热差设计[J]. 红外技术, 2021, 43(11): 1073-1080.
引用本文: 尹晶, 刘旭, 徐晓影, 崔艳群, 王强, 郭富城. 基于光机集成分析的火情监察红外变焦镜头主动消热差设计[J]. 红外技术, 2021, 43(11): 1073-1080.
YIN Jing, LIU Xu, XU Xiaoying, CUI Yanqun, WANG Qiang, GUO Fucheng. Active Athermalization Design of Infrared Zoom Lens for Fire Monitoring Based on Opto-mechanical Integration Analysis[J]. Infrared Technology , 2021, 43(11): 1073-1080.
Citation: YIN Jing, LIU Xu, XU Xiaoying, CUI Yanqun, WANG Qiang, GUO Fucheng. Active Athermalization Design of Infrared Zoom Lens for Fire Monitoring Based on Opto-mechanical Integration Analysis[J]. Infrared Technology , 2021, 43(11): 1073-1080.

基于光机集成分析的火情监察红外变焦镜头主动消热差设计

详细信息
    作者简介:

    尹晶(1983-),女,副教授,研究方向为光电检测技术及仪器。E-mail: 621232@qq.com

    通讯作者:

    刘旭(1982-),男,副教授,研究方向为电气控制研究。E-mail: 65493440@qq.com

  • 中图分类号: O439

Active Athermalization Design of Infrared Zoom Lens for Fire Monitoring Based on Opto-mechanical Integration Analysis

  • 摘要: 红外变焦监视镜头的F数与焦深相对较小,因此温度变化极易导致离焦现象,导致成像质量下降。本文针对火情监察红外变焦镜头在-40℃~50℃范围内成像清晰的技术要求,采用有限元法分析温度变化下各光学镜片前后镜面的刚体位移与旋转量,将刚体位移导入至Sigit光机集成分析软件中仿真出温度变化工况下镜头的离焦量,分析结果表明焦距值变量在-0.16~+0.4 mm之间,调焦量为0.108~0.188。针对上述情况,采用两个凸轮两套执行机构来分别控制变倍组和补偿组的移动,实现镜头的主动消热差保证温度变化下成像仍旧清晰。最终通过温度可靠性实验对镜头光学分辨率温度适应性的进行考核,实验结果表明在温度变化过程中空间分辨率均大于30 lp/mm,变焦过程成像质量基本清晰。
  • 图  1  短焦(f′=34.5mm)红外光学系统图

    Figure  1.  Infrared optical system diagram at short-focal configuration

    图  2  长焦(f′=77.5mm)红外光学系统图

    Figure  2.  Infrared optical system diagram at long-focal configuration

    图  3  20℃长/短焦组态红外镜头MTF曲线

    Figure  3.  MTF curves of at Infrared optical system at short/long focal configuration under 20℃

    图  4  红外变焦镜头有限元模型

    Figure  4.  Finite element model of infrared zoom lens

    图  5  -40℃工况下红外变焦镜头热变形位移云图

    (a) -40℃工况下短焦组态镜头热变形位移云图(b) -40℃工况下长焦组态镜头热变形位移云图

    Figure  5.  Displacement cloud of thermal deformation of infrared zoom lens

    (a) Displacement cloud of thermal deformation of lens (b) Displacement cloud of thermal deformation of lens at short focal configuration under -40℃ at long focal configuration under -40℃

    图  6  红外变焦镜头短焦组态离焦量与温度对应曲线

    Figure  6.  Corresponding curve of defocus and temperature of infrared zoom lens at short-focus configuration

    图  7  主动消热调焦镜头光机结构设计

    Figure  7.  Optical machine structure design with active athermalization

    图  8  主动消热设计后的光机集成分析结果

    Figure  8.  The result of the integrated opti-mechanical analysis of the after initiative athermalization design

    图  9  红外镜头分辨率温度可靠性实验原理图

    Figure  9.  Schematic diagram of resolution temperature reliability experiment of infrared zooming lens

    图  10  不同温度工况下分辨率温度可靠性实验多杆靶图像

    Figure  10.  Image of multi-bar targets of resolution temperature reliability experiment under different temperature conditions

    表  1  红外变焦镜头设计参数与技术要求

    Table  1.   Design parameters and technical requirements of infrared zoom lens

    Design parameter Value
    Wave length 8-14 μm
    Focal length 34.5 mm/77.5 mm
    Field of view $ f=34.5:2{\omega }_{X}\approx 9.148°;2{\omega }_{Y}\approx 6.768°$
    $ f=77.5:2{\omega }_{X}\approx 4.02°;2{\omega }_{Y}\approx 3.016°$
    Aperture F=1
    Technical requirement The imaging is clear in the range of -40℃ to 50℃
    下载: 导出CSV

    表  2  红外变焦镜头各材料参数表

    Table  2.   Material parameters of infrared zoom lens

    Material Elastic modulus(MPA) Density(10-6 kg/mm3) Poisson tatio Coefficient of linear expansion(10-6/℃)
    Aluminium alloy(2A12) 75000 2.7 0.33 23
    Brass alloy(H62) 200000 8.43 0.277 20.6
    Alloy steel(45) 200000 7.8 0.3 11.6
    Germanite glass 103000 5.32 0.28 6.1
    Zinc selenide 70000 5.27 0.28 7.1
    下载: 导出CSV

    表  3  红外变焦镜头短焦组态(f′=34.5mm)-40℃温度载荷下各镜面刚体位移、旋转变化量

    Table  3.   Variations in displacement and rotation of rigid bodies of each mirror of infrared zoom lens at short-focusconfiguration(f′=34.5mm) under -40℃ temperature load

    Mirror number Rigid body
    displacement
    X-axis)
    Rigid body
    displacement
    Y-axis)
    Rigid body
    displacement
    Z-axis)
    Rigid body
    rotation
    X-axis)
    Rigid body
    rotation
    Y-axis)
    Rigid body
    rotation
    Z-axis)
    1 7.77×10-3 5.28×10-3 2.48×10-2 -3.267×10-12 -7.301×10-13 -1.904×10-12
    2 7.62×10-3 4.73×10-3 1.68×10-2 1.124×10-12 -9.678×10-13 -2.564×10-12
    3 -6.62×10-3 -5.46×10-3 6.35×10-2 -4.22×10-12 -3.514×10-12 -3.114×10-12
    4 -7.11×10-3 -5.03×10-3 5.55×10-2 -3.15×10-12 -3.212×10-12 -3.163×10-12
    5 6.77×10-3 5.72×10-3 -2.48×10-2 1.25×10-11 -2.675×10-12 -9.006×10-13
    6 7.11×10-3 5.68×10-3 -2.62×10-2 -3.66×10-12 -2.253×10-12 5.046×10-12
    7 4.66×10-3 5.33×10-3 -7.46×10-3 -6.62×10-12 -2.170×10-12 -2.006×10-12
    8 3.54×10-3 5.76×10-3 -7.29×10-3 -6.67×10-12 -2.061×10-12 1.120×10-12
    下载: 导出CSV

    表  4  红外变焦镜头长焦组态(f′=77.5mm)-40℃温度载荷各镜面刚体位移、旋转变化量

    Table  4.   Variations in displacement and rotation of rigid bodies of each mirror of infrared zoom lens at long-focus configuration(f′=77.5mm) under -40℃ temperature load

    Mirror number Rigid body
    displacement
    X-axis)
    Rigid body
    displacement
    Y-axis)
    Rigid body
    displacement
    Z-axis)
    Rigid body
    rotation
    X-axis)
    Rigid body
    rotation
    Y-axis)
    Rigid body
    rotation
    Z-axis)
    1 3.37×10-2 1.2×10-2 -6.68×10-2 1.182×10-11 -1.776×10-11 -5.684×10-12
    2 3.11×10-2 2.06×10-2 -6.747×10-2 1.124×10-11 -8.886×10-12 -5.564×10-12
    3 -3.66×10-2 3.33×10-2 -7.77×10-3 -7.51×10-12 -7.152×10-12 -1.752×10-12
    4 -3.56×10-2 2.68×10-2 -7.26×10-3 -6.99×10-12 -6.88×10-12 -2.846×10-12
    5 3.51×10-2 -1.27×10-2 -3.34×10-2 -1.13×10-11 -9.996×10-13 -9.687×10-13
    6 3.12×10-2 -9.97×10-3 -4.09×10-2 -6.66×10-12 -1.752×10-12 3.514×10-12
    7 2.17×10-2 1.17×10-2 -1.13×10-2 -8.884×10-13 -8.684×10-13 -1.1904×10-12
    8 1.64×10-2 1.22×10-2 -1.44×10-2 -9.991×10-13 -5.152×10-13 -1.188×10-12
    下载: 导出CSV

    表  5  不同温度下的焦距值

    Table  5.   Focal length values at different temperatures

    Temperature/℃ Infinity object distance
    short focal length
    value/mm
    Infinity object distance
    long focal length
    value/mm
    10 m object distance
    short focal length
    value/mm
    30 m object distance
    long focal length
    value/mm
    20
    -40
    +50
    34.5
    34.84
    34.34
    77.5
    77.9
    77.3
    unchanged
    unchanged
    unchanged
    unchanged
    unchanged
    unchanged
    下载: 导出CSV

    表  6  不同温度下的离焦量

    Table  6.   Defocus at different temperatures

    Temperature/℃ Infinity object distance
    short focal defocus
    amount/mm
    Infinity object distance
    long focal defocus
    amount/mm
    10 m object distance
    short focal defocus
    amount/mm
    0 m object distance
    long focal defocus
    amount/mm
    20
    -40
    +50
    0
    +0.44
    -0.215
    0
    0.6
    -0.3
    0.108
    0.554
    -0.092
    0.188
    0.808
    -0.102
    下载: 导出CSV
  • [1] 刘蓝, 谢明江, 高珊, 等. 基于无线传感技术的秸秆焚烧火点在线监测系统设计与实现[J]. 东北农业大学学报, 2020, 51(9): 89-96. doi:  10.3969/j.issn.1005-9369.2020.09.011

    LIU Lan, XIE Mingjiang, GAO Shan, et al. Design and implementation of online monitoring system for straw burning places based on wireless sensor technology[J]. Journal of Northeast Agricultural University, 2020, 51(9): 89-96. doi:  10.3969/j.issn.1005-9369.2020.09.011
    [2] 郭小虎, 赵辰霄, 周平, 等. 变焦光学系统的景/焦深延拓及其分析[J]. 光学技术, 2019, 45(3): 263-268. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJS201903002.htm

    GUO Xiaohu, ZHAO Chenxiao, ZHOU Ping, et al. Application and analysis of the extension of depth of field and focus in zoom system[J]. Optical Technique, 2019, 45(3): 263-268. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJS201903002.htm
    [3] 范哲源, 高立民, 张志, 等. 中波红外三视场变焦光学系统设计[J]. 红外与激光工程, 2014, 43(2): 523-527. doi:  10.3969/j.issn.1007-2276.2014.02.035

    FANG Zheyuan, GAO Limin, ZHANG Zhi, et al. Design of three-field middle-wave infrared zoom system[J]. Infrared and Laser Engineering, 2014, 43(2): 523-527. doi:  10.3969/j.issn.1007-2276.2014.02.035
    [4] 杜伟峰, 刘永志, 高文杰, 等. 空基跟踪平台变焦镜头光机热集成分析[J]. 激光与红外, 2020, 50(5): 615-622. doi:  10.3969/j.issn.1001-5078.2020.05.019

    DU Weifeng, LIU Yongzhi, GAO Wenjie, et al. Thermal structure optical integrated analysis of zoom lens for airborne tracking platform[J]. Laser & Infrared, 2020, 50(5): 615-622. doi:  10.3969/j.issn.1001-5078.2020.05.019
    [5] 王雷, 杨照金, 黎高平, 等. 红外光学材料折射率温度系数测量装置[J]. 应用光学, 2005, 26(3): 54-54. doi:  10.3969/j.issn.1002-2082.2005.03.014

    WANG Lei, YANG Zhaojin, LI Gaoping, et al. An equipment for Measuring the Temperature Coefficient of Refractive Index of Infrared Materials[J]. Journal of Applied Optics, 2005, 26(3): 54-54. doi:  10.3969/j.issn.1002-2082.2005.03.014
    [6] 张林. 红外望远镜温度自动补偿技术研究[D]. 南京: 南京理工大学, 2004: 12-16.

    ZHANG Lin. Research on Automatic Temperature Compensation Technology for Infrared Telescope[D]. Nangjing: Nangjing University of Science And Technology, 2004: 12-16.
    [7] 王学新, 焦明印. 光学被动式和机电式组合消热差方法的研究[J]. 应用光学, 2010, 31(3): 354-359. doi:  10.3969/j.issn.1002-2082.2010.03.003

    WANG Xuexin, JIAO Mingyin. Combination of optical passive and mechanical-electrical athermalisation[J]. Journal of Applied Optics, 2010, 31(3): 354-359. doi:  10.3969/j.issn.1002-2082.2010.03.003
    [8] 刘光. 基于光机热集成的空间相机主动热光学关键技术研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2019: 11-15.

    LIU Guang. Research on key technologies of active thermal optics for space camera based on optical-mechanical-thermal integration[D]. Changchun: University of the Chinese Academy of Sciences, 2019: 11-15.
    [9] 杨瑞宇, 樊佩琦, 吴诚, 等. 一种具有温度补偿的红外热像仪自动对焦系统及方法[P]. CN109068073A. 2018.

    YANG Ruiyu, FAN Peiqi, WU Cheng, et al. The invention relates to an automatic focusing system and method for infrared thermal imager with temperature compensation[P]. CN109068073A. 2018.
    [10] 朱峰, 张宇, 陈骥, 等. 消热差红外镜头热光学特性分析[J]. 激光与红外, 2017, 47(10): 1299-1304. doi:  10.3969/j.issn.1001-5078.2017.10.021

    ZHU Feng, ZHANG Yu, CHEN Ji, et al. Analysis of thermal optical properties for athermal infrared lens[J]. Laser & Infrared, 2017, 47(10): 1299-1304. doi:  10.3969/j.issn.1001-5078.2017.10.021
    [11] 米振洲. 非制冷型红外双波段连续变焦光学系统设计[D]. 西安: 西安工业大学, 2014: 21-23.

    MI Zhenzhou. Design of uncooled infrared dual-band continuous zoom optical system[D]. Xi'an: Xi'an Technological University, 2014: 21-23.
  • 加载中
图(10) / 表(6)
计量
  • 文章访问数:  118
  • HTML全文浏览量:  51
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-14
  • 修回日期:  2021-06-15
  • 刊出日期:  2021-11-20

目录

    /

    返回文章
    返回