留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cd1-xZnxTe晶体中由本征缺陷引起的导电类型转变界面研究

赵文 孔金丞 姜军 赵增林 陈少璠 宋林伟 俞见云 陈珊 庹梦寒 李俊 贺政 姬荣斌

赵文, 孔金丞, 姜军, 赵增林, 陈少璠, 宋林伟, 俞见云, 陈珊, 庹梦寒, 李俊, 贺政, 姬荣斌. Cd1-xZnxTe晶体中由本征缺陷引起的导电类型转变界面研究[J]. 红外技术, 2022, 44(6): 560-564.
引用本文: 赵文, 孔金丞, 姜军, 赵增林, 陈少璠, 宋林伟, 俞见云, 陈珊, 庹梦寒, 李俊, 贺政, 姬荣斌. Cd1-xZnxTe晶体中由本征缺陷引起的导电类型转变界面研究[J]. 红外技术, 2022, 44(6): 560-564.
ZHAO Wen, KONG Jincheng, JIANG Jun, ZHAO Zenglin, CHEN Shaofan, SONG Linwei, YU Jianyun, CHEN Shan, TUO Menghan, LI Jun, HE Zheng, JI Rongbin. Position-Dependent Conductivity Transition by Intrinsic Defects in Cd1-xZnxTe Crystal[J]. Infrared Technology , 2022, 44(6): 560-564.
Citation: ZHAO Wen, KONG Jincheng, JIANG Jun, ZHAO Zenglin, CHEN Shaofan, SONG Linwei, YU Jianyun, CHEN Shan, TUO Menghan, LI Jun, HE Zheng, JI Rongbin. Position-Dependent Conductivity Transition by Intrinsic Defects in Cd1-xZnxTe Crystal[J]. Infrared Technology , 2022, 44(6): 560-564.

Cd1-xZnxTe晶体中由本征缺陷引起的导电类型转变界面研究

详细信息
    作者简介:

    赵文(1991-),男,云南昆明人,工程师,硕士,主要从事Ⅱ-Ⅵ族化合物半导体材料与器件技术方面的研究,E-mail: 1130494072@qq.com

    通讯作者:

    孔金丞(1979-),男,云南南华人,研究员,博士,主要从事红外探测器材料与器件技术研究,E-mail:kongjincheng@163.com

  • 中图分类号: TN215, TN304

Position-Dependent Conductivity Transition by Intrinsic Defects in Cd1-xZnxTe Crystal

  • 摘要: 在富Te生长条件下,采用垂直布里奇曼法(vertical Bridgman method, VB)生长的部分碲锌镉(Cd1-xZnxTe, CZT)晶体内存在导电类型转变界面。为深入探讨碲锌镉晶体导电类型转变界面形成的原因,结合晶体导电类型和红外光谱透过率的测试结果与第一性原理的理论计算进行分析,结果表明,碲锌镉晶体内的导电类型转变界面是晶体生长过程中形成的Cd空位(VCd)缺陷与Cd间隙(Cdi)缺陷导致的。在富Te条件的生长过程中,Cd空位缺陷易于形成,碲锌镉晶体材料中含有大量的Cd空位缺陷,材料的导电型为p型。在晶体生长结束阶段的降温过程中,Cd原子会扩散至碲锌镉晶体中,促进了Cd间隙缺陷的形成,在碲锌镉晶体材料中形成Cd间隙缺陷,导致晶体材料的导电性转变为n型。
  • 图  1  布里奇曼法生长的碲锌镉晶体:(左图)电类型由p型向n型转变的界面;(右图)碲锌镉晶体的Te沉积相夹杂/包裹体像图

    Figure  1.  Image of a Cd0.96Zn0.04Te crystal grown by vertical Bridgman method: (Left) As schematically illustrated by different colors leads to a position-dependent transition from p- to n-type conductivity; (Right) Te inclusion /precipitation in Cd1-xZnxTe

    图  2  碲锌镉晶体的红外光谱透过率

    Figure  2.  The IR Transmittance measurements of a Cd1-xZnxTe (x=0.04)

    图  3  (a) 碲锌镉晶体结构;(b) 2×2×2超胞碲锌镉晶体的总电子态密度和分波电子态密度图;(c) 碲锌镉本征缺陷的单电子能态结构图;(d)~(g)分别是具有1.1 mm厚的本征碲锌镉晶体(d)、含Cd空位VCd缺陷(e)、Cd间隙Cdi(f)缺陷和Te取代CdTeCd(g)缺陷碲锌镉晶体的反射谱R、吸收谱A和透光谱T

    Figure  3.  Crystal structure of Cd1-xZnxTe(a), total and partial density of states of Cd28Zn4Te32 supercell containing eight times (2×2×2) the volume of the unit cell(b), calculated single particle electron energy states for the Cd28Zn4Te32 crystals neutral intrinsic defects(c), transmission(T), reflection(R), and absorption(A) spectra of a freestanding 1.1 mm-thick Cd28Zn4Te32, Cd27Zn4Te32, Cd29Zn4Te32, Cd27Zn4Te33 wafer (d)~ (g), respectively

    图  4  在碲锌镉晶体中,导电类型转变界面的形成原理

    Figure  4.  Formation schematic of position-dependent conductivity transition in Cd1-xZnxTe crystal

  • [1] THOMAS G A, TIMOFEEV V B. Optical Properties of Solids, Handbook on Semiconductors[M]. Ed. M. BALKANSKI, Amsterdam: North Holland Publ. Co., 1980.
    [2] Johnson S M, Kalisher M H, Ahlgren W L, et al. HgCdTe 128×128 infrared focal plane arrays on alternative substrates of CdZnTe/GaAs/Si[J]. Appl. Phys. Lett. , 1990, 56: 946-954. doi:  10.1063/1.102632
    [3] Johnson S M, Delyon T J, Cockrum C A, et al. Direct growth of CdZnTe/Si substrates for large-area HgCdTe infrared focal-plane arrays[J]. J. Electron Mater, 1995, 24: 467-473. doi:  10.1007/BF02657949
    [4] Dhar V, Garg A K, Bhan R K. Impact of CdTe/CdZnTe substrate resistivity on performance degradation of long-wavelength n(+)-on-p HgCdTe infrared photodiodes[C]//IEEE Trans. Electron Devices, 2000, 47: 978-986.
    [5] Maxey C D, Ahmed M U, Jones C L, et al. Growth of long wavelength infrared MCT emitters on conductive substrates[J]. J. Electron Mater. , 2001, 30: 723-730. doi:  10.1007/BF02665862
    [6] Reddy M, Peterson J M, Lofgreen D D, et al. HgCdTe growth on 6 cm×6 cm CdZnTe substrates for large-format dual-band infrared focal-plane arrays[J]. J. Electron Mater. , 2010, 39: 974-980. doi:  10.1007/s11664-010-1141-4
    [7] Schlesinger T E, Toney J E, Yoon H, et al. Cadmium zinc telluride and its use as a nuclear radiation detector material[J]. Materials Science & Engineering R. Reports, 2001, 32(4-5): 103-189.
    [8] Csaba Szeles. CdZnTe and CdTe materials for X-ray and gamma ray radiation detector applications[J]. Physica Status Solidi, 2004, 241(3): 783-790. doi:  10.1002/pssb.200304296
    [9] Fiederle M, Babentsov V, Franc J, et al. Growth of high resistivity CdTe and (Cd, Zn)Te crystals[J]. Crystal Research & Technology, 2010, 38(7-8): 588-597.
    [10] Reese D J, Szeles Cs, Harris K A. Impurity segregation in horizontal Bridgman grown cadmium zinc telluride[J]. Journal of Electronic Materials, 2000, 29(6): 770-774. doi:  10.1007/s11664-000-0223-0
    [11] Segall M, Lindan D, Philip J D, et al. First-principles simulation: ideas, illustrations and the CASTEP code[J]. Journal of Physics Condensed Matter, 2002, 14(11): 2717-2744. doi:  10.1088/0953-8984/14/11/301
    [12] Paufler P. Landolt-Börnstein. Numerical data and functional relationships in science and technology, New Series. Editors in Chief: K-H Hellwege, O Madelung, Group Ⅲ: Crystal and Solid State Physics, Vol. 7: Crystal Structure Data of Organic Compounds[M]. New York: Springer, 1973.
    [13] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. doi:  10.1103/PhysRevLett.77.3865
    [14] Wiedemeier H, BAI Y C. Mass transport and crystal growth of cadmium telluride by PVT[J]. Journal of Electronic Materials, 1990, 19(12): 1373-1381. doi:  10.1007/BF02662827
  • 加载中
图(4)
计量
  • 文章访问数:  153
  • HTML全文浏览量:  23
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-25
  • 修回日期:  2021-05-09
  • 刊出日期:  2022-06-20

目录

    /

    返回文章
    返回