留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锑化铟红外焦平面阵列探测器的热应力结构优化

张江风 刁云飞 张晓玲 孟庆端

张江风, 刁云飞, 张晓玲, 孟庆端. 锑化铟红外焦平面阵列探测器的热应力结构优化[J]. 红外技术, 2021, 43(12): 1202-1206.
引用本文: 张江风, 刁云飞, 张晓玲, 孟庆端. 锑化铟红外焦平面阵列探测器的热应力结构优化[J]. 红外技术, 2021, 43(12): 1202-1206.
ZHANG Jiangfeng, DIAO Yunfei, ZHANG Xiaoling, MENG Qingduan. Thermal Stress Structural Optimization of InSb Infrared Focal Plane Array Detector[J]. Infrared Technology , 2021, 43(12): 1202-1206.
Citation: ZHANG Jiangfeng, DIAO Yunfei, ZHANG Xiaoling, MENG Qingduan. Thermal Stress Structural Optimization of InSb Infrared Focal Plane Array Detector[J]. Infrared Technology , 2021, 43(12): 1202-1206.

锑化铟红外焦平面阵列探测器的热应力结构优化

详细信息
    作者简介:

    张江风(1996-),男,河南上蔡县人,硕士研究生,主要从事红外焦平面探测器结构优化方面的研究。E-mail:3045140641@qq.com

    通讯作者:

    孟庆端(1978-),男,河南叶县人,教授,博士,主要从事红外焦平面探测器结构可靠性方面的研究工作。E-mail:qdmengly@163.com

  • 中图分类号: TN215, TN202

Thermal Stress Structural Optimization of InSb Infrared Focal Plane Array Detector

  • 摘要: 在液氮冲击实验中,锑化铟红外焦平面阵列探测器中各层材料之间线膨胀系数的不同将导致热失配产生,过大的热失配应力将引起锑化铟芯片断裂失效。为了降低热失配对锑化铟芯片的影响,基于弹性多层体系热应力计算理论,借鉴平衡复合物结构设计方法,优化平衡复合物结构上表面的热应变,使得平衡复合物结构中硅读出电路上表面的热应变尽可能接近锑化铟芯片下表面的热应变,从而大幅降低锑化铟芯片中的热应力。考虑器件加工工艺成熟度,经一系列计算表明:当硅读出电路的厚度取25 μm时,平衡复合物结构中硅读出电路上表面的热应变与InSb芯片下表面的热应变最为接近,此时锑化铟芯片中的拉应力最小。锑化铟芯片中拉应力的大幅降低,将为消减液氮冲击中锑化铟芯片的碎裂几率提供可以信赖的结构设计方案和实现途径。
  • 图  1  InSb IRFPAs结构示意图

    Figure  1.  InSb IRFPAs structural diagram

    图  2  弹性多层系统结构示意图

    Figure  2.  Schematic diagram of elastic multilayer system structure

    图  3  平衡复合物结构示意图

    Figure  3.  Schematic diagram of balanced complex structure

    图  4  Silicon ROIC上表面热应变与其厚度的关系,蓝线为InSb芯片的自由应变值

    Figure  4.  Relationship between Silicon ROIC thickness and thermal strain on its upper surface, the blue line is the free strain value of InSb chip

    图  5  InSb焦平面探测器中心对称区域沿薄膜厚度方向的正应力分布

    Figure  5.  The normal stress distribution in the central symmetric region of the InSb focal plane detector along the direction of film thickness

    表  1  InSb IRFPAs结构的材料参数及其具体尺寸

    Table  1.   Parameters of InSb IRFPAs

    Materials Elastic modulus (E/GPa) Poison's ratio (μ) Temperatures (T/K) Height/μm Coefficient of linear expansion(10-6K-1
    InSb chip 409 0.35 77–300 10 5.1
    Underfill 0.0002/α 0.30 77–300 10 23.82
    Silicon ROIC 163 0.28 77–300 25–340 2.62
    Sapphire 335 0.25 77–300 500 4.8
    Kovar 142 0.32 77–300 635 5.5
    Note: α=22.46×10-6+5.04×10-8×(T-273), where T is temperature in Kelvin
    下载: 导出CSV
  • [1] 雷亚贵, 王戎瑞, 陈苗海. 国外非制冷红外焦平面阵列探测器进展[J]. 激光与红外, 2007(9): 801-805. doi:  10.3969/j.issn.1001-5078.2007.09.001

    LEI Yagui, WANG Rongrui, CHEN Miaohai. Development of foreign uncooled IRFPA detectors[J]. Laser & Infrared, 2007(9): 801-805. doi:  10.3969/j.issn.1001-5078.2007.09.001
    [2] Bhan R K, Dhar V. Recent infrared detector technologies, applications, trends and development of HgCdTe based cooled infrared focal plane arrays and their characterization[J]. Opto-Electronics Review, 2019, 27(2): 174-193. doi:  10.1016/j.opelre.2019.04.004
    [3] Philip Klipstein, Daniel Aronov, Michael ben Ezra, et al. Recent progress in InSb based quantum detectors in Israel[J]. Infrared Physics & Technology, 2013, 59: 172-181. http://www.onacademic.com/detail/journal_1000035936383110_429d.html
    [4] Rogalski A. Recent progress in infrared detector technologies[J]. Infrared Physics & Technology, 2011, 54(3): 136-154. http://www.researchgate.net/profile/Antoni_Rogalski/publication/241112884_Recent_progress_in_HgCdTe_infrared_detector_technology/links/5524e12e0cf22e181e73b04e.pdf
    [5] Hoffman A W, Corrales E, Love P J, et al. 2K×2K InSb for astronomy[J]. Proceedings of SPIE - The International Society for Optical Engineering, 2004, 5499: 59-67.
    [6] HA H D, TANG Z, LU H D, et al. Design and simulation of a novel flip-chip structure for THz detector package[J]. Microsystem Technologies, 2016, 23(7): 1-8. doi:  10.1007/s00542-016-3021-1
    [7] MENG Q D, ZHANG X L, LV Y Q, et al. Function reconsideration of indium bump in InSb IRFPAs[J]. Optical and Quantum Electronics, 2019, 51(9): 304.1-304.13. doi:  10.1007/s11082-019-2021-7
    [8] 陈星, 华桦, 何凯, 等. 红外焦平面探测器封装结构热应力分析[J]. 激光与红外, 2014(6): 59-62. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201406013.htm

    CHEN Xing, HUA Hua, HE Kai, et al. Thermal stress analysis of IRFPA packaging assembly[J]. Laser & Infrared, 2014(6): 59-62. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201406013.htm
    [9] 王雯, 张小雷, 吕衍秋, 等. Si基InSb红外焦平面阵列探测器的研究[J]. 红外与激光工程, 2014(5): 1359-1363. doi:  10.3969/j.issn.1007-2276.2014.05.001

    WANG Wen, ZHANG Xiaolei, LV Yanqiu, et al. InSb infrared focal plane arrays detector based on Si wafer[J]. Infrared and Laser Engineering, 2014(5): 1359-1363. doi:  10.3969/j.issn.1007-2276.2014.05.001
    [10] ZHANG X L, MENG Q D, ZHANG L W, et al. Modeling and deformation analyzing of InSb focal plane arrays detector under thermal shock[J]. Infrared Physics & Technology, 2013, 63: 28-34.
    [11] MENG Q D, ZHANG X L, LV Y Q, et al. Local delamination of InSb IRFPAs in liquid nitrogen shock tests[J]. Infrared Physics & Technology, 2017, 86: 207-211.
    [12] 陈星. 碲镉汞红外焦平面探测器可靠性相关技术研究[D]. 上海: 中国科学院研究生院(上海技术物理研究所), 2014.

    CHEN Xing. Research on the Related Technology of HgCdTe Infrared Focal Plane Detector Reliability[D]. Shanghai: Shanghai Institute of Technology Physics, Chinese Academy of Sciences, 2014.
    [13] 赵玉红. InSb红外焦平面探测器结构优化研究[D]. 洛阳: 河南科技大学, 2016.

    ZHAO Y H. Optimization of Structure of InSb Infrared Focal Plane Array[D]. Luoyang: Henan University of Science and Technology, 2016.
    [14] Kuzmenko N K. BCS universal ratios in finite systems[J]. Physica C: Superconductivity and its Applications, 2020, 576: 1353709. http://www.sciencedirect.com/science/article/pii/S0921453420300332
    [15] Hsueh, C H. Thermal stresses in elastic multilayer systems[J]. Thin Solid Films, 2002, 418: 182-188. http://www.onacademic.com/detail/journal_1000034583558710_41a3.html
    [16] Hsueh, C H, Luttrell C R, Lee S, et al. Interfacial peeling moments and shear forces at free edges of multilayers subjected to thermal stresses[J]. J. Am. Chem. Soc. , 2006, 89: 1632-1638. http://www.researchgate.net/profile/Chun-Hway_Hsueh/publication/229870518_Interfacial_Peeling_Moments_and_Shear_Forces_at_Free_Edges_of_Multilayers_Subjected_to_Thermal_Stresses/links/00b7d523d4a135cc8a000000
    [17] ZHANG X L, MENG Q D, LV Y Q, et al. Assessment of InSb infrared detector arrays assembly procedure employing ANSYS[J]. Optical and Quantum Electronics, 2019, 51(4): 1-8. http://www.onacademic.com/detail/journal_1000042271909399_7d60.html
    [18] Kanno T, Wada H, Nagashima M, et al. 256×256 element HgCdTe hybrid IRFPA for 8- to 10-μm band[C]//Proceedings of SPIE-The International Society for Optical Engineering, 1995, 2552: doi: 10.1117/12.218237.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  145
  • HTML全文浏览量:  70
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-12
  • 修回日期:  2021-11-29
  • 刊出日期:  2021-12-20

目录

    /

    返回文章
    返回