留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

原位退火对碲锌镉晶体第二相夹杂缺陷的影响

袁绶章 赵文 孔金丞 王静宇 姜军 赵增林 姬荣斌

袁绶章, 赵文, 孔金丞, 王静宇, 姜军, 赵增林, 姬荣斌. 原位退火对碲锌镉晶体第二相夹杂缺陷的影响[J]. 红外技术, 2021, 43(7): 615-621.
引用本文: 袁绶章, 赵文, 孔金丞, 王静宇, 姜军, 赵增林, 姬荣斌. 原位退火对碲锌镉晶体第二相夹杂缺陷的影响[J]. 红外技术, 2021, 43(7): 615-621.
YUAN Shouzhang, ZHAO Wen, KONG Jincheng, WANG Jingyu, JIANG Jun, ZHAO Zenglin, JI Rongbin. Effect of in-Situ Post-annealing on the Second Phase Inclusion Defects[J]. Infrared Technology , 2021, 43(7): 615-621.
Citation: YUAN Shouzhang, ZHAO Wen, KONG Jincheng, WANG Jingyu, JIANG Jun, ZHAO Zenglin, JI Rongbin. Effect of in-Situ Post-annealing on the Second Phase Inclusion Defects[J]. Infrared Technology , 2021, 43(7): 615-621.

原位退火对碲锌镉晶体第二相夹杂缺陷的影响

详细信息
    作者简介:

    袁绶章(1983-),男,云南泸西人,研究员,博士研究生,主要从事红外探测器材料与器件技术研究,E-mail:phelix@126.com

    通讯作者:

    姬荣斌(1967-),男,云南大理人,博士,研究员,博士研究生导师,主要从事半导体材料与器件研究,E-mail:454091787@qq.com

  • 中图分类号: TB34

Effect of in-Situ Post-annealing on the Second Phase Inclusion Defects

  • 摘要: 采用传统布里奇曼法生长碲锌镉晶体,在配料过程中添加适当过量的Cd,并在晶体生长结束阶段的降温过程中加入晶锭原位退火工艺,晶体的第二相夹杂缺陷得到了有效抑制。根据晶体第二相夹杂缺陷的形成机理,结合热扩散理论和碲锌镉晶体的P-T相图,研究了退火温度对晶体第二相夹杂缺陷密度和粒度(尺寸)的影响,获得了抑制碲锌镉晶体第二相夹杂缺陷的退火条件。利用优化的退火条件制备碲锌镉晶体,晶体第二相夹杂缺陷的尺寸小于10 μm,密度小于250 cm-2
  • 图  1  碲锌镉晶体生长及原位退火过程,t1为晶锭头部的温度,t2为晶锭尾部的温度,t3为坩埚空腔的温度

    Figure  1.  Process of CdZnTe growth and annealing, temperature of the ingot tip (t1), temperature of the ingot tail (t2) and temperature of the crucible top (t3)

    图  2  碲锌镉晶体第二相夹杂缺陷的形貌特征:(a)为Te的第二相夹杂缺陷,(b)为Cd的第二相夹杂缺陷

    Figure  2.  Second phase inclusion defects in CdZnTe, Te inclusion(a) and Cd inclusion(b)

    图  3  不同组分碲锌镉晶体的P-T相图[8]:1. CdTe;2. Cd0.95Zn0.05Te;3. Cd0.85Zn0.15Te;4. Cd0.5Zn0.5Te;5. Cd0.2Zn0.8Te;6. Cd0.1Zn0.9Te;7. ZnTe;8. Ref[13];9. Ref[13];10. Ref[14]

    Figure  3.  P-T phase diagram of CdZnTe[8]: 1. CdTe; 2. Cd0.95Zn0.05Te; 3. Cd0.85Zn0.15Te; 4. Cd0.5Zn0.5Te; 5. Cd0.2Zn0.8Te; 6. Cd0.1Zn0.9Te; 7. ZnTe; 8. Ref[13]. 9. Ref[13]; 10. Ref[14]

    图  4  不同空腔温度t3(Cd分压)条件下生长晶体的第二相夹杂缺陷形态

    Figure  4.  Second phase inclusion defects in CdZnTe with different temperature of the crucible top t3(Cd partial pressure)

    图  5  第二相夹杂缺陷数量随空腔温度t3(Cd分压)的变化关系

    Figure  5.  Relationship between second phase inclusion defects in CdZnTe and temperature of the crucible top t3(Cd partial pressure)

    图  6  温度t3为750℃条件下制备的10批次碲锌镉晶体的第二相夹杂缺陷特征

    Figure  6.  Second phase inclusion defects in CdZnTe, 10 lots of run-to-run growth and post-annealing with t3=750℃

    图  7  温度t3为750℃条件下制备的10批次碲锌镉晶体的第二相夹杂缺陷粒度(尺寸)和密度

    Figure  7.  The density and the size of second phase inclusion defects in CdZnTe, 10 lots of run-to-run growth and post-annealing with t3=750℃

    图  8  两类工艺生长的碲锌镉晶体第二相夹杂缺陷对比情况:(a) 常规(未含退火工艺)生长的碲锌镉晶体第二相夹杂缺陷;(b) 含退火工艺生长的碲锌镉晶体第二相夹杂缺陷

    Figure  8.  Second phase inclusion defects in CdZnTe: without in-situ post-annealing (a) CdZnTe with post-annealing process(b)

    图  9  两种工艺条件下生长晶体的形貌和EPD情况:(a) 常规(未含退火工艺)生长的碲锌镉晶体形貌;(b) 含退火工艺生长的碲锌镉晶体形貌;(c) 常规(未含退火工艺)生长的晶体典型(图 10中的第6批次)EPD~3×104 cm-2,(d) 含退火工艺生长的碲锌镉晶体典型(图 10中的第6批次)EPD~2.2×104 cm-2

    Figure  9.  10 lots of run-to-run X-ray diffraction image and EPD results of CdZnTe with/without in-situ post-annealing, CdZnTe without post-annealing process(a)(c), CdZnTe with post-annealing process(b)(d)

    图  10  两类工艺生长的碲锌镉晶体形貌和EPD对比情况

    Figure  10.  EPD results comparison between CdZnTe with/ without post-annealing process

  • [1] Kinch M A. HgCdTe: recent trends in the ultimate IR semiconductor[J]. J. Electron. Mater. , 2010, 39(7): 1043-1052. doi:  10.1007/s11664-010-1087-6
    [2] Chang Y, Becker C R, Grein C H, et al. Surface morphology and defect formation mechanisms for HgCdTe (211)B grown by molecular beam epitaxy[J]. Journal of Electronic Materials, 2008, 37: 1171-1183. doi:  10.1007/s11664-008-0477-5
    [3] 张阳, 吴军, 木胜, 等. CdZnTe中富碲沉积相缺陷引起的液相外延HgCdTe薄膜表面缺陷[J]. 红外与毫米波学报, 2018, 37(6): 728-733. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201806016.htm

    ZHANG Yang, WU Jun, MU Sheng, et al. Surface defects of liquid phase epitaxial growth of HgCdTe film induced by Te-rich precipitates in CdZnTe substrates[J]. J. Infrared Millim. Waves, 2018, 37(6): 728-733. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201806016.htm
    [4] Belas E, Bugár M, Grill R, et al. Elimination of inclusions in (CdZn) Te substrates by post-grown annealing[J]. J. Electron. Mater., 2007, 36: 1025-1030. doi:  10.1007/s11664-007-0167-8
    [5] Kim K, Hwang S, Yu H, et al. Two-step annealing to remove Te secondary-phase defects in CdZnTe while preserving the high electrical resistivity[J]. IEEE Transactions on Nuclear Science, 2018, 65(8): 2333-2337. doi:  10.1109/TNS.2018.2856805
    [6] SHENG F F, YANG J R, SUN S W, et al. Influence of Cd-rich annealing on defects in Te-rich CdZnTe materials[J]. J. Electron. Mater. , 2014, 43(7): 2702-2708. doi:  10.1007/s11664-014-3140-3
    [7] Zanio Kenneth. Chemical Diffusion in Cadmium Telluride[J]. Journal of Applied Physics, 1970, 41(5): 1935-1940. doi:  10.1063/1.1659145
    [8] Everson W J, Ard C K, Sepich J L, et al. Etch pit characterization of CdTe and CdZnTe substrates for use in mercury cadmium telluride epitaxy[J]. Journal of Electronic Materials, 1995, 24: 505-510. doi:  10.1007/BF02657954
    [9] ZHANG N, Yeckel A, Burger A, et al. Anomalous segregation during electrodynamic gradient freeze growth of cadmium zinc telluride[J]. Journal of Crystal Growth, 2011, 325(1): 10-19. doi:  10.1016/j.jcrysgro.2011.04.041
    [10] Roy U N, Weiler S, Stein J. Growth and interface study of 2 in diameter CdZnTe by THM technique[J]. J. Cryst. Growth, 2010, 312(19): 2840-2845. doi:  10.1016/j.jcrysgro.2010.05.046
    [11] SHEN J, Aidun D K, Regel L, et al. Characterization of precipitates in CdTe and Cd1xZnxTe grown by vertical Bridgman-Stock barger technique[J]. Journal of Crystal Growth, 1993, 132(1-2): 250-260. doi:  10.1016/0022-0248(93)90269-3
    [12] Zanio K. Chemical diffusion in Cadmium Telluride[J]. J. Appl. Phys. , 1970, 41(5): 1935-1940. doi:  10.1063/1.1659145
    [13] Jordan A S, Zupp R P. Calculation of the P-T diagrams of CdTe[J]. J. Electrochem. Soc., 1969, 116(9): 1264-1285. doi:  10.1149/1.2412294
    [14] Lorenz M R. Phase equilibria in the system Cd-Te[J]. Journal of Physics and Chemistry of Solids, 23(7): 939-947.
  • 加载中
图(10)
计量
  • 文章访问数:  296
  • HTML全文浏览量:  43
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-03
  • 修回日期:  2021-06-28
  • 刊出日期:  2021-07-01

目录

    /

    返回文章
    返回