留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

形状自适应低秩表示的电力设备热故障诊断方法研究

黄志鸿 洪峰 黄伟

黄志鸿, 洪峰, 黄伟. 形状自适应低秩表示的电力设备热故障诊断方法研究[J]. 红外技术, 2022, 44(8): 870-874.
引用本文: 黄志鸿, 洪峰, 黄伟. 形状自适应低秩表示的电力设备热故障诊断方法研究[J]. 红外技术, 2022, 44(8): 870-874.
HUANG Zhihong, HONG Feng, HUANG Wei. Shape Adaptation Low Rank Representation for Thermal Fault Diagnosis of Power Equipments[J]. Infrared Technology , 2022, 44(8): 870-874.
Citation: HUANG Zhihong, HONG Feng, HUANG Wei. Shape Adaptation Low Rank Representation for Thermal Fault Diagnosis of Power Equipments[J]. Infrared Technology , 2022, 44(8): 870-874.

形状自适应低秩表示的电力设备热故障诊断方法研究

基金项目: 

国网湖南省电力有限公司科技项目 5216A522000U

详细信息
    作者简介:

    黄志鸿(1993-),男,湖南长沙人,博士,高级工程师,主要研究方向为电力设备故障智能诊断,红外图像处理。E-mail: zhihong_huang111@163.com

  • 中图分类号: TP751.1

Shape Adaptation Low Rank Representation for Thermal Fault Diagnosis of Power Equipments

  • 摘要: 本文提出一种形状自适应低秩表示的电力设备热故障诊断方法。该方法通过联合超像素分割和低秩表示技术进行热故障诊断。首先,使用主成分分析算法对输入的红外图像进行变换,并对第一主成分进行超像素分割处理,将红外图像自适应地分割为若干非重叠的超像素。然后,采用低秩表示技术对逐个超像素进行热故障诊断,通过充分挖掘空间结构信息和红外温度信息,优化提升热故障诊断精度。实验结果表明,与其他传统热故障诊断方法相比,本文提出的方法在热故障诊断精度上具有较大的优势,满足电力设备红外巡检的应用需求。
  • 图  1  所提出的SS-LRR方法流程图

    Figure  1.  The schematic diagram of the proposed SS-LRR method

    图  2  部分中间过程图

    Figure  2.  Partial process diagram

    图  3  不同方法在第一幅测试图的诊断结果

    Figure  3.  Different diagnosis results on the first test image

    图  4  不同方法在第2幅测试图的诊断结果

    Figure  4.  Different diagnosis results on the second test image

    图  5  不同方法在第3幅测试图的诊断结果

    Figure  5.  Different diagnosis results on the third test image

    表  1  不同诊断方法的AUC指标

    Table  1.   AUC values of different diagnosis methods

    Test images RX LDP LRR SS-LRR
    1 0.9707 0.8312 0.8574 0.9852
    2 0.9901 0. 9132 0. 9324 0.9925
    3 0.9893 0. 9253 0. 9486 0.9935
    下载: 导出CSV

    表  2  不同诊断方法的运行时间

    Table  2.   Running time of different diagnosis methods s

    Test images RX LDP LRR SS-LRR
    1 0.59 0.75 0.47 1.66
    2 0.53 0.61 0.34 1.52
    3 0.84 0.98 0.56 1.81
    下载: 导出CSV
  • [1] 刘嵘, 刘辉, 贾然, 等. 一种智能型电网设备红外诊断系统的设计[J]. 红外技术, 2020, 42(12): 198-1202. http://hwjs.nvir.cn/article/id/a00b6f68-052d-40c0-a00f-1f0ff120ce69

    LIU Rong, LIU Hui, JIA Ran, et al. Design of intelligent infrared di-agnosis system for power grid equipment[J]. Infrared Technology, 2020, 42(12): 1198-1202. http://hwjs.nvir.cn/article/id/a00b6f68-052d-40c0-a00f-1f0ff120ce69
    [2] 张文峰, 彭向阳, 陈锐民, 等. 基于无人机红外视频的输电线路发热缺陷智能诊断技术[J]. 电网技术, 2014, 38(5): 1334-1338. https://www.cnki.com.cn/Article/CJFDTOTAL-DWJS201405034.htm

    ZHANG Wenfeng, PENG Xiangyang, CHEN Ruiming, et al. Intelligent diagnostic techniques of abnormal heat defect in transmission lines based on unmanned helicopter infrared video[J]. Power System Technology, 2014, 38(5): 1334-1338. https://www.cnki.com.cn/Article/CJFDTOTAL-DWJS201405034.htm
    [3] 王淼, 杜伟, 孙鸿博, 等. 基于红外图像识别的输电线路故障诊断方法[J]. 红外技术, 2017, 39(4): 383-386. http://hwjs.nvir.cn/article/id/hwjs201704015

    WANG Miao, DU Wei, SUN Hongbo, et al. Transmission line fault diagnosis method based on infrared image recognition[J]. Infrared Technology, 2017, 39(4): 383-386. http://hwjs.nvir.cn/article/id/hwjs201704015
    [4] 胡洛娜, 彭云竹, 石林鑫. 核猫群红外图像异常检测方法在电力智能巡检中的应用[J]. 红外技术, 2018, 40(9): 323-328. http://hwjs.nvir.cn/article/id/hwjs201809013

    HU Luona, PENG Yunzhu, SHI Linxin. Anomaly detection method of infrared images based on kernel cat swarm optimization clustering with application in intelligent electrical power inspection[J]. Infrared Technology, 2018, 40(9): 323-328. http://hwjs.nvir.cn/article/id/hwjs201809013
    [5] 魏钢, 冯中正, 唐跃林, 等. 输变电设备红外故障诊断技术与试验研究[J]. 电气技术, 2013, 14(6): 75-78. doi:  10.3969/j.issn.1673-3800.2013.06.020

    WEI Gang, FENG Zhongzheng, TANG Yuelin, et al. The infrared diagnostic technology of power transmission devices and experimen-tal study[J]. Electrical Technology, 2013, 14(6): 75-78. doi:  10.3969/j.issn.1673-3800.2013.06.020
    [6] 李鑫, 崔昊杨, 霍思佳, 等. 基于粒子群优化法的Niblack电力设备红外图像分割[J]. 红外技术, 2018, 40(8): 780-785. http://hwjs.nvir.cn/article/id/hwjs201808010

    LI Xin, CUI Wuyang, HUO Siyang. Niblack's method for infrared image segmentation of electrical equipment improved by particle swarm optimization[J]. Infrared Technology, 2018, 40(8): 780-785. http://hwjs.nvir.cn/article/id/hwjs201808010
    [7] 林颖, 郭志红, 陈玉峰. 基于卷积递归网络的电流互感器红外故障图像诊断[J]. 电力系统保护与控制, 2017, 45(16): 87-94. doi:  10.7667/j.issn.1674-3415.2015.16.013

    LIN Ying, GUO Zhihong, CHEN Yufeng. Convolutional-recursive network based current transformer infrared fault image diagnosis[J]. Power System Protection and Control, 2015, 45(16): 87-94. doi:  10.7667/j.issn.1674-3415.2015.16.013
    [8] 黄志鸿, 吴晟, 肖剑, 等. 基于引导滤波的电力设备热故障诊断方法研究[J]. 红外技术, 2021, 43(9): 910-915. http://hwjs.nvir.cn/article/id/cb2a71f1-cd7c-4e76-977b-b6f7472b905d

    HUANG Zhihong, WU Sheng, XIAO Jian, et al. Thermal fault dagnosis of power equipments based on guided filter[J]. Infrared Technology, 2021, 43(9): 910-915. http://hwjs.nvir.cn/article/id/cb2a71f1-cd7c-4e76-977b-b6f7472b905d
    [9] 常亮, 邓小明, 周明全, 等. 图像理解中的卷积神经网[J]. 自动化学报, 2016, 42(9): 1300-1312. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201609002.htm

    CHANG Liang, DENG Xiaoming, ZHOU Mingquan, et al. Convolu-tional neural networks in image understanding[J]. Acta Automatica Sinica, 2016, 42(9): 1300-1312. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201609002.htm
    [10] 魏东, 龚庆武, 来文青, 等. 基于卷积神经网络的输电线路区内外故障判断及故障选相方法研究[J]. 中国电机工程学报, 2016, 36(5): 21-28. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC2016S1003.htm

    WEI Dong, LONG Qinwu, LAI Wenqing, et al. Research on internal and external fault diagnosis and fault-selection of transmission line based on convolutional neural network[J]. Proceedings of the CSEE, 2016, 36(5): 21-28. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC2016S1003.htm
    [11] 周可慧, 廖志伟, 肖异瑶, 等. 基于改进CNN的电力设备红外图像分类模型构建研究[J]. 红外技术, 2019, 41(11): 1033-1038. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS201911007.htm

    ZHOU Kehui, LIAO Zhiwei, XIAO Yiyao, et al. Construction of infrared image classification model for power equipments based on improved CNN[J]. Infrared Technology, 2019, 41(11): 1033-1038. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS201911007.htm
    [12] LIU M, Tuzel O, Ramalingam S, et al. Entropy rate superpixel segmentation[C]//Pattern Recognit., 2011: 2097-2104.
    [13] YUAN X, YANG J. Sparse and low-rank matrix decomposition via alternating direction methods[J]. Pacific. J. Optim, 1990, 9(1): 1760-1770.
    [14] Reed I S, YU X. Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution[J]. IEEE Transactions on Acoustic Speech Signal Processing, 1990, 38(10): 1760-1770. doi:  10.1109/29.60107
    [15] KANG X, ZHANG X, LI S, et al. Hyperspectral anomaly detection with attribute and edge-preserving filters[J]. IEEE Trans. Geosci. Remote Sens. , 2017, 55(10): 5600-5611. doi:  10.1109/TGRS.2017.2710145
    [16] XU Y, WU Z, LI J, et al. Anomaly detection in hyperspectral images based on low-rank and sparse representation[J]. IEEE Trans. Geosci Remote Sens. , 2016, 54(4): 1990 doi:  10.1109/TGRS.2015.2493201
    [17] 蒋昀宸, 樊绍胜, 陈骏星溆. 带电作业智能新技术及其应用现状[J]. 湖南电力, 2018, 38(5): 1-4. doi:  10.3969/j.issn.1008-0198.2018.05.001

    JIANG Yunchen, FAN Zhaosheng, CHEN Junxingxu. Smart new-technologies and applications for live work[J]. Hunan Electric Power, 2018, 38(5): 1-4. doi:  10.3969/j.issn.1008-0198.2018.05.001
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  156
  • HTML全文浏览量:  49
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-10
  • 修回日期:  2022-02-15
  • 刊出日期:  2022-08-20

目录

    /

    返回文章
    返回