留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

亚像元火点对红外预警卫星的辐射干扰特性

李文杰 闫世强 宋畅 吴亚宏 王成良 欧阳琰

李文杰, 闫世强, 宋畅, 吴亚宏, 王成良, 欧阳琰. 亚像元火点对红外预警卫星的辐射干扰特性[J]. 红外技术, 2021, 43(1): 73-78.
引用本文: 李文杰, 闫世强, 宋畅, 吴亚宏, 王成良, 欧阳琰. 亚像元火点对红外预警卫星的辐射干扰特性[J]. 红外技术, 2021, 43(1): 73-78.
LI Wenjie, YAN Shiqiang, SONG Chang, WU Yahong, WANG Chengliang, OU YANG Yan. Radiation Interference Characteristics of Sub-pixel Fire Points on Infrared Early Warning Satellite[J]. INFRARED TECHNOLOGY, 2021, 43(1): 73-78.
Citation: LI Wenjie, YAN Shiqiang, SONG Chang, WU Yahong, WANG Chengliang, OU YANG Yan. Radiation Interference Characteristics of Sub-pixel Fire Points on Infrared Early Warning Satellite[J]. INFRARED TECHNOLOGY, 2021, 43(1): 73-78.

亚像元火点对红外预警卫星的辐射干扰特性

基金项目: 

国家自然科学基金青年科学基金项目 61503410

详细信息
    作者简介:

    李文杰(1991-),男,博士研究生,主要从事预警装备运用研究工作。E-mail:kfcvs@qq.com

    通讯作者:

    王成良(1975-),男,副教授,主要从事红外光电探测技术研究工作。E-mail:bingler@163.com

  • 中图分类号: TN977

Radiation Interference Characteristics of Sub-pixel Fire Points on Infrared Early Warning Satellite

  • 摘要: 亚像元火点是红外预警卫星的辐射干扰源,基于推导火点像元辐射强度方程,对不同条件下的火点像元在2.55~2.85 (m波段和4.19~4.48 (m波段的辐射强度进行数值计算,分析了影响火点像元辐射特性的因素。通过与Titan ⅢB型火箭尾焰辐射特性进行对比分析并利用实际火点数据验证了亚像元火点的辐射干扰特性,结果表明:亚像元火点在2.55~2.85 (m波段和4.19~4.48 (m波段均能够对红外预警卫星的探测造成辐射干扰,与火箭尾焰辐射特性的区别是大部分火点像元在4.19~4.48 (m波段具有更强的辐射强度,结果可为提升红外预警卫星抗火点辐射干扰能力提供理论支撑。
  • 图  1  火点像元的辐射组成

    Figure  1.  Radiation composition of fire pixel

    图  2  卫星天顶角与探测器像元对应的地表分辨率关系

    Figure  2.  The relationship between the satellite zenith angle and the surface resolution of the detector

    图  3  卫星天顶角与路径大气平均透过率的关系

    Figure  3.  The relationship between satellite zenith angle and path average atmospheric transmittance

    图  4  不同火点像元参数对辐射强度的影响

    Figure  4.  Effect of different parameter changes on radiant intensity of fire pixel

    图  5  Titan ⅢB型火箭尾焰在飞行高度18km、观测角为48°时的辐射强度

    Figure  5.  Spectra of Titan ⅢB rocket tail flame at 18 km and viewing aspect of 48°

    图  6  与Titan ⅢB型火箭尾焰辐射强度相同的火点温度和火点面积曲线

    Figure  6.  Critical temperature and area of surface fire point equal to radiant intensity of Titan ⅢB rocket tail flame

    图  7  探测器覆盖范围内的火点分布及火点参数统计

    Figure  7.  Fire distribution and fire parameter statistics within the coverage of the detector

    表  1  火点像元参数的参考值与范围

    Tt/K Tb/K St/km2 θs θz
    Value 800 300 0.1 30 30
    Range 400-1600 280-320 0.01-1 0-80 0-80
    下载: 导出CSV

    表  2  火点像元辐射强度统计

    Table  2.   Statistics of fire pixel radiation intensity

    Wavebands/μm Minimum/W·sr-1 Maximum/W·sr-1 Average/W·sr-1 Median/W·sr-1
    2.55-2.85 2.771×102 6.197×106 2.456×104 7.014×103
    4.19-4.48 3.412×103 5.576×106 7.449×104 4.351×104
    下载: 导出CSV
  • [1] 江珊, 巩彩兰, 胡勇, 等.短波红外吸收带林火与背景辐射亮度比较分析[J].大气与环境光学学报, 2014, 9(3): 223-228. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJY201403009.htm

    JIANG Shan, GONG Cailan, HU Yong, et al. Comparison of radiation characteristics of forest fire and background in short wave infrared absorption bands[J]. Journal of Atmospheric and Environmental Optics, 2014, 9(3): 223-228. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJY201403009.htm
    [2] 宋文韬, 胡勇, 刘丰轶, 等.基于气象卫星云图的红外吸收带火山特征分析[J].光谱学与光谱分析, 2019, 39(1): 73-78. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201901014.htm

    SONG Wentao, HU Yong, LIU Fengyi, et al. Analysis of infrared absorption band for volcano based on meteorological satellite cloud image[J]. Spectroscopy and Spectral Analysis, 2019, 39(1): 73-78. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201901014.htm
    [3] 黄景雨.林火虚警源红外成像特征建模及检测方法研究[D].成都: 电子科技大学, 2019.

    HUANG Jingyu. Detection Method of Forest Fire False Alarm Source with Infrared Imaging Feature Modeling[D]. Chengdu: University of Electronic Science and Technology of China, 2019.
    [4] 贺宝华, 陈良富, 陶金花, 等.基于观测几何的环境卫星红外相机遥感火点监测算法[J].红外与毫米波学报, 2011, 30(2): 104-108. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201102003.htm

    HE Baohua, CHEN Liangfu, TAO Jinhua, et al. A contextual fire detection algorithm based on observation geometry for HJ-1B-IRS[J]. Journal of Infrared and Millimeter Waves, 2011, 30(2): 104-108. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201102003.htm
    [5] Hakan Oğuz. A Software tool for retrieving land surface temperature from aster imagery[J]. Journal of Agricultural Sciences, 2015, 21(4): 471-482.
    [6] Hertel I V, Schulz C. Atoms, Molecules and Optical Physics: Atoms and Spectroscopy[M]. Springer, 2015: 34-37.
    [7] 刘尊洋, 李修和. SBIRS-GEO预警卫星工作机理与探测参数分析[J].激光与红外, 2018, 48(3): 363-368. doi:  10.3969/j.issn.1001-5078.2018.03.017

    LIU Zunyang, LI Xiuhe. Study on working mechanism and detecting parameters of SBIRS-GEO early warning satellites[J]. Laser & Infrared, 2018, 48(3): 363-368. doi:  10.3969/j.issn.1001-5078.2018.03.017
    [8] 朱广赜, 何大雄.卫星扫描辐射计的地面分辨率的计算[J].中国空间科学技术, 1986(1): 32-39. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKJ198601007.htm

    ZHU Guangze, HE Daxiong. The calculation of the ground resolution of the scanning radiometer for a satellite[J]. Chinese Space Science and Technology, 1986(1): 32-39. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKJ198601007.htm
    [9] 刘尊洋, 邵立, 汪亚夫, 等.基于辐射通量表观对比度光谱的红外预警卫星探测波段选择方法[J].红外与毫米波学报, 2014, 33(5): 492-497. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201405007.htm

    LIU Zunyang, SHAO Li, WANG Yafu, et al. A band selection method for infrared warning satellites based on radiation flux apparent contrast spectrum[J]. Journal of Infrared and Millimeter Waves, 2014, 33(5): 492-497. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201405007.htm
    [10] Simmons F S. Rocket Exhaust Plume Phenomenology[M]. EI Segundo: The Aerospace Press and American Institute of Aeronautics and Astronautics, 2000: 105-112.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  25
  • HTML全文浏览量:  11
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-04
  • 修回日期:  2020-11-17
  • 刊出日期:  2021-01-20

目录

    /

    返回文章
    返回