留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二类超晶格红外焦平面探测器的研究进展

李俊斌 李东升 吴圣娟 周旭昌 李艳辉 杨春章 杨雯 蒋志 常超 任洋

李俊斌, 李东升, 吴圣娟, 周旭昌, 李艳辉, 杨春章, 杨雯, 蒋志, 常超, 任洋. 二类超晶格红外焦平面探测器的研究进展[J]. 红外技术, 2021, 43(11): 1034-1043.
引用本文: 李俊斌, 李东升, 吴圣娟, 周旭昌, 李艳辉, 杨春章, 杨雯, 蒋志, 常超, 任洋. 二类超晶格红外焦平面探测器的研究进展[J]. 红外技术, 2021, 43(11): 1034-1043.
LI Junbin, LI Dongsheng, WU Shengjuan, ZHOU Xuchang, LI Yanhui, YANG Chunzhang, YANG Wen, JIANG Zhi, CHANG Chao, REN Yang. The Research Progress in Type Ⅱ Superlattices Infrared Focal Plane Array Detectors[J]. Infrared Technology , 2021, 43(11): 1034-1043.
Citation: LI Junbin, LI Dongsheng, WU Shengjuan, ZHOU Xuchang, LI Yanhui, YANG Chunzhang, YANG Wen, JIANG Zhi, CHANG Chao, REN Yang. The Research Progress in Type Ⅱ Superlattices Infrared Focal Plane Array Detectors[J]. Infrared Technology , 2021, 43(11): 1034-1043.

二类超晶格红外焦平面探测器的研究进展

详细信息
    作者简介:

    李俊斌(1989-),男,云南昌宁人,博士,工程师,主要从事红外光电材料与器件方面的研究工作。E-mail:junbin_lee666@163.com

  • 中图分类号: TN215

The Research Progress in Type Ⅱ Superlattices Infrared Focal Plane Array Detectors

  • 摘要: 近几年,二类超晶格红外探测器在材料生长、器件结构设计、器件制备上经历了快速的发展,使得二类超晶格成为除碲镉汞外最受关注的红外探测器材料。本文简要介绍了二类超晶格的优势,总结了国际上二类超晶格红外探测器研究进展,回顾了二类超晶格红外探测器的技术发展历程,并分析了国内二类超晶格材料与器件中存在的技术问题。
  • 图  1  InAs/GaSb二类超晶格的Ⅱ型能带排列

    Figure  1.  Type-Ⅱ band alignment of InAs/GaSb T2SL system

    图  2  AIM InAs/GaSb超晶格中波二极管截面示意图

    Figure  2.  Schematic cross section of an InAs/GaSb SL MWIR diode of AIM

    图  3  AIM InAs/GaSb超晶格256×256中波焦平面成像系统拍摄的照片

    Figure  3.  Thermal images taken with the InAs/GaSb superlattice 256×256 MWIR FPA camera system of AIM

    图  4  美国西北大学中波焦平面探测器在120 K(a)和150 K(b)下的成像照片,(c) 86-150 K下焦平面的NTED

    Figure  4.  Images taken with a MWIR FPA detector of Northwestern University operating at (a) 120 K and (b) 150 K (c) NEDT measured from 86 to150 K

    图  5  休斯实验室1 k×2 k/5 μm焦平面在150 K下拍摄的照片

    Figure  5.  Image captured by a 1 k×2 k/5 μm MWIR FPA of HRL operated at 150 K

    图  6  JPL 640×512规格InAs/InAsSb超晶格中波红外焦平面拍摄的照片

    Figure  6.  Images taken at 160 K and 170 K using a 640×512 format InAs/InAsSb superlattice MWIR focal plane array of JPL

    图  7  p-π-M-N超晶格二极管的器件结构与能带图

    Figure  7.  Device structure and band diagram of a p-π-M-N superlattice photodiode

    图  8  美国西北大学1 k×1 k长波焦平面在81 K和68 K拍摄的照片

    Figure  8.  Image taken with the 1 k×1 k LWIR FPA of Northwestern University at 81 K and 68 K

    图  9  CBIRD器件结构的能带示意图

    Figure  9.  Schematic band diagram of the CBIRD device structure

    图  10  JPL InAs/GaSb超晶格长波红外焦平面拍摄的照片

    Figure  10.  Image taken with the InAs/GaSb LWIR superlattice infrared FPA of JPL

    图  11  JPL InAs/InAsSb超晶格长波红外焦平面探测器拍摄的照片

    Figure  11.  Image taken with the InAs/InAsSb LWIR superlattice infrared FPA detector of JPL

    图  12  pBp器件结构的能带示意图

    Figure  12.  Schematic band diagram of a pBp device

    图  13  SCD Pelican-D LW焦平面拍摄的照片

    Figure  13.  Image registered with SCD's Pelican-D LW FPA

    图  14  AIM 384×288中波双色二类超晶格焦平面成像效果

    Figure  14.  Bispectral infrared image taken with 384×288 MWIR dual-band T2SL FPA of AIM

    图  15  美国西北大学320×256超晶格中长波双色焦平面拍摄的照片

    Figure  15.  Imaging taken with 320×256 MWIR-LWIR dual-color T2SL FPA of Northwestern University

    (a) MWIR (b) LWIR

    图  16  休斯实验室中长双色焦平面探测器在80 K温度和f/4条件下拍摄的照片

    Figure  16.  Pictures acquired with a MW/LW FPA of HRL at 80 K and f/4

    (a) MWIR (b) LWIR

    图  17  休斯实验室89个焦平面的NETD有效像元率

    Figure  17.  NETD operability of 89 FPAs of HRL

    图  18  二类超晶格红外探测器发展历程

    Figure  18.  Roadmap of type-Ⅱ superlattice infrared photodetectors development

    表  1  不同探测波段探测器及焦平面性能参数

    Table  1.   Performance parameter of detector and FPA under different detection regime

    Research Institute Device structure Operation temperature/K Cut-off wavelength/μm Quantum efficiency/% Dark current/A/cm-2 Detectivity/Jones FPA format/pitch NETD/mK Operability/% Publish year
    MWIR
    AIM n-i-p 77 5.4
    (5% cutoff)
    30 256×256/40 μm 11.1 99.42 2005
    Northwestern University p-π-M-N 150 4.2 1.05×1012 320×256 11.0@120 K 2011
    HRL 150 5.0 50 without AR coating 6.3×10-6 2 k×1 k/5 μm < 20@150 K, f/2.3, with subframe
    averaging
    99.9 2017
    JPL nBn 150 5.4 52 4.5×10-5 640×512/24 μm 18.7 99.7 2018
    LWIR
    Northwestern University p-π-M-N 77 11.0 >50 5.5×10-5 1 k×1 k/18 μm 27 @81 K
    19@68 K
    2010
    JPL CBIRD 80 11.5 21 1 k×1 k/17.5 μm 53 2010
    JPL nBn 60 11.2 37 1×10-5 640×512 21 99.7% 2018
    SCD pBp 77 9.5 ~50 4.4×10-5 640×512/18 μm 15 (with 8 frame average) >99% 2016
    Dual color IR
    AIM 77 4 (Blue)
    5 (Red)
    2.2×10-7
    1.9×10-7
    384×288/40 μm 29.5(Blue)
    16.5 (Red)
    2006
    Northwestern University 5.2 @160 K for MW
    11.2
    @77K for LW
    40-50@160K for MW
    > 30
    @77K for LW
    7.0×1012@160K for MW
    2.0×1011
    @77K for LW
    320×256 10 (MW)
    30 (LW)
    2012
    HRL 80 1280×720/
    12μm
    27.44 (MW)
    27.62(LW)
    99.4(MW)
    99.09(LW)
    2017
    Note:Unless otherwise indicated, the cut-off wavelength refers to 50% cut-off wavelength
    下载: 导出CSV
  • [1] Sai-halasz G A, Tsu R, Esaki L. A new semiconductor superlattice[J]. Appl. Phys. Lett., 1977, 30: 651. doi:  10.1063/1.89273
    [2] Sai-halasz G A, Esaki L, Harrison W A. InAs/GaSb superlattice energy structure and its semiconductor-semimetal transition[J]. Phys. Rev. B, 1978, 18: 2812. doi:  10.1103/PhysRevB.18.2812
    [3] Smith D L, Mailhiot C. Proposal for strained type Ⅱ superlattice infrared detectors[J]. J. Appl. Phys., 1987, 62: 2545. doi:  10.1063/1.339468
    [4] Johnson J L, Samoska L A, Gossard A C, et al. Electrical and optical properties of infrared photodiodes using the InAs/Ga1−xInxSb superlattice in heterojunctions with GaSb[J]. J. Appl. Phys., 1996, 80: 1116. doi:  10.1063/1.362849
    [5] Rogalski A, Kopytko M, Martyniuk P. InAs/GaSb type-Ⅱ superlattice infrared detectors: three decades of development[C]//Proc. of SPIE, 2017, 10117: 1017715.
    [6] Plis E A, InAs/GaSb type-Ⅱ superlattice detectors[J]. Adv. Electron., 2014, 2014: 246769
    [7] 尚林涛, 王静, 邢伟荣, 等. 红外探测Ⅱ类超晶格技术概述(一)[J]. 激光与红外, 2021, 51(4): 404. doi:  10.3969/j.issn.1001-5078.2021.04.002
    [8] 尚林涛, 王静, 邢伟荣, 等. 红外探测Ⅱ类超晶格技术概述(二)[J]. 激光与红外, 2021, 51(5): 548. doi:  10.3969/j.issn.1001-5078.2021.05.002
    [9] Walther M, Rehm R, Fuchs F, et al, 256×256 Focal Plane Array Midwavelength Infrared Camera Based on InAs/GaSb Short-Period Superlattices[J]. J. Electron. Mater., 2005, 34: 722. doi:  10.1007/s11664-005-0010-z
    [10] Rehm R, Walther M, Schmitz J, et al. 2nd and 3rd Generation Thermal Imagers based on Type-Ⅱ Superlattice Photodiodes[C]//Proc. of SPIE, 2006, 6294: 629404.
    [11] Pour S A, HUANG E K, CHEN G, et al. High operating temperature midwave infrared photodiodes and focal plane arrays based on type-Ⅱ InAs/GaSb superlattices[J]. Appl. Phys. Lett., 2011, 98: 143501. doi:  10.1063/1.3573867
    [12] Sharifi H, Roebuck M, Terterian S, et al. Advances in Ⅲ-Ⅴ Bulk and Superlattice-based High Operating Temperature MWIR Detector Technology[C]//Proc. of SPIE, 2017, 10177: 101770U.
    [13] TING D Z, Soibel A, Khoshakhlagh A, et al. Mid-w avelength high operating temperature barrier infrared detector and focal plane arrays[J]. Appl. Phys. Lett., 2018, 113: 021101. doi:  10.1063/1.5033338
    [14] Ting D Z, Soibel A, Khoshakhlagh A, et al. Antimonide type-Ⅱ superlattice barrier infrared detectors[C]//Proc. of SPIE, 2018, 10177: 101770N.
    [15] Manurkar P, Ramezani-Darvish S, Nguyen B M, et al. High performance long wavelength infrared mega-pixel focal plane array based on type-Ⅱ superlattices[J]. Appl. Phys. Lett., 2010, 97: 193505. doi:  10.1063/1.3514244
    [16] Razeghi M, Haddadi A, Hoang A M, et al. Antimonide-Based Type Ⅱ Superlattices: A Superior Candidate for the Third Generation of Infrared Imaging Systems[J]. J. Electron. Mater., 2014, 43: 2802-2807. doi:  10.1007/s11664-014-3080-y
    [17] Gunapala S D, Ting D Z, Hill C J, et al. Demonstration of a 1024×1024 Pixel InAs-GaSb Superlattice Focal Plane Array[J]. IEEE Photonic Tech. Lett., 2010, 22: 1856. doi:  10.1109/LPT.2010.2089677
    [18] Ting D Z, Soibel A, Khoshakhlagh A, et al. Antimonide e-SWIR, MWIR, and LWIR barrier infrared detector and focal plane array development[C]//Proc. of SPIE, 2018, 10624: 1062410.
    [19] Klipstein P C, Avnon E, Benny Y, et al. Type-Ⅱ superlattice detector for long-wave infrared imaging[C]//Proc. of SPIE, 2015, 9451: 94510K.
    [20] Rehm R, Walther M, Schmitz J, et al. Dual-colour thermal imaging with InAs/GaSb superlattices in mid-wavelength infrared spectral range[J]. Electron. Lett., 2006, 42: 577. doi:  10.1049/el:20060878
    [21] Wörl A, Rutz F, Rehm R, et al. Electro-Optical Properties of InAs/GaSb Superlattice Infrared Photodiodes for Bispectral Detection[C]//Proceedings IRS, 2013: 37-42.
    [22] Rutz F, Walther M, Schmitz J, et al. InAs/GaSb superlattices for advanced infrared focal plane arrays[J]. Infrared Phys. Techn., 2009, 52: 344. doi:  10.1016/j.infrared.2009.09.005
    [23] HUANG E K, HOANG M A, CHEN G, et al. Highly selective two-color mid-wave and long-wave infrared detector hybrid based on Type-Ⅱ superlattices[J]. Opt. Lett., 2012, 37: 4744. doi:  10.1364/OL.37.004744
    [24] Delaunay P Y, Nosho B Z, Gurga A R, et al. Advances in Ⅲ-Ⅴ Based Dual-Band MWIR/LWIR FPAs at HRL[C]//Proc. of SPIE, 2017, 10177: 101770T.
    [25] Gurga A R, Nosho B Z, Terterian S, et al. Dual-Band MWIR/LWIR Focal Plane Arrays based on Ⅲ-Ⅴ Strained-Layer Superlattices[C]//Proc. of SPIE, 2018, 10624: 106240O.
    [26] Hill C J, Li J V, Mumolo J M, Gunapala S D, MBE grown type-Ⅱ MWIR and LWIR superlattice photodiodes[J]. Infrared Phys. Techn., 2007, 50: 187. doi:  10.1016/j.infrared.2006.10.033
    [27] Ting D Z, Hill C J, Soibel A, et al. A high-performance long wavelength superlattice complementary barrier infrared detector[J]. Appl. Phys. Lett., 2009, 95: 023508. doi:  10.1063/1.3177333
    [28] Soibel A, Nguyen J, Höglund L, et al. InAs/GaSb superlattice based long-wavelength infrared detectors: Growth, processing, and characterization[J]. Infrared Phys. Techn., 2011, 54: 247. doi:  10.1016/j.infrared.2010.12.023
    [29] Höglund L, Soibel A, Ting D Z, et al. Minority carrier lifetime and photoluminescence studies of antimony based superlattices[C]//Proc. of SPIE, 2012, 8511: 851106.
    [30] Ting D Z, Soibel A, Khoshakhlagh A, et al. Complementary barrier infrared detector (CBIRD) with double tunnel junction contact and quantum dot barrier infrared detector (QD-BIRD)[J]. Infrared Phys. Techn., 2013, 59: 146. doi:  10.1016/j.infrared.2012.12.030
    [31] Ting D Z, Soibel A, Gunapala S D, Hole effective masses and subband splitting in type-Ⅱ superlattice infrared detectors[J]. Appl. Phys. Lett., 2016, 108: 183504. doi:  10.1063/1.4948387
    [32] Ting D Z, Soibel A, Khoshakhlagh A, et al. Antimonide type-Ⅱ superlattice barrier infrared detectors[C]//Proc. of SPIE, 2017, 10177: 101770N.
    [33] Gunapala S D, TING D Z, Rafol S, et al. Antimonides T2SL Mid-Wave and Long-Wave Infrared Focal Plane Arrays for Earth Remote Sensing Applications[C]//Proc. of SPIE, 2020, 11288: 112880K.
    [34] Wei Y, Gin A, Razeghi M, et al. Type Ⅱ InAs/GaSb superlattice photovoltaic detectors with cutoff wavelength approaching 32 μm[J]. Appl. Phys. Lett., 2002, 81: 3675. doi:  10.1063/1.1520699
    [35] Nguyen B-M., Razeghi M, Nathan V, et al. Type-Ⅱ "M" Structure Photodiodes: An Alternative Material Design for Mid-Wave to Long Wavelength Infrared Regimes[C]//Proc. of SPIE, 2007, 6479: 64790S.
    [36] Delaunay P-Y, Nguyen B M, Hoffman D, et al. 320×256 infrared Focal Plane Array based on Type Ⅱ InAs/GaSb superlattice with a 12 µm cutoff wavelength[C]//Proc. of SPIE, 2007, 6542: 654204.
    [37] Livneh Y, Klipstein P C, Klin O, et al. k·p model for the energy dispersions and absorption spectra of InAs/GaSb type-Ⅱ superlattices[J]. Phys. Rev. B, 2012, 86, 235311. doi:  10.1103/PhysRevB.86.235311
    [38] Klipstein P C, Avnon E, Benny Y, et al. InAs/GaSb Type Ⅱ superlattice barrier devices with a low dark current and a high quantum efficiency. [C]//Proc. of SPIE, 2014, 9070: 90700U.
    [39] Grein C H, Garland J, Flatte M E. Strained and unstrained layer superlattices for infrared detection[J]. J. Electron. Mater., 2009, 38: 1800. doi:  10.1007/s11664-009-0757-8
  • 加载中
图(18) / 表(1)
计量
  • 文章访问数:  483
  • HTML全文浏览量:  55
  • PDF下载量:  223
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-18
  • 修回日期:  2021-08-03
  • 刊出日期:  2021-11-20

目录

    /

    返回文章
    返回