Parameters Simulation in Line Laser Scanning Thermography Nondestructive Testing
-
摘要: 线激光扫描热成像无损检测技术使用线形激光作为热激励源,采取扫描加热方式,在碳纤维复合材料无损检测方面具有独特优势。在分析线激光扫描红外热成像检测原理以及复合材料特点的基础上,提出了扫描方向、扫描速度、激光功率等3个可能影响检测效果的参数。建立线激光扫描检测复合材料的仿真模型,选取缺陷表面中心点和无缺陷处表面温度的最大温差作为检测效果的特征量,分析了上述参数对检测效果的影响,并对激光功率、扫描速度与检测效果之间关系进行了拟合,总结了实验时兼顾检测效率和检测效果的参数选取原则。Abstract: Line laser scanning thermography is a nondestructive testing technology that uses a line laser as a thermal excitation source and adopts a scanning heating method. It has unique advantages in the nondestructive testing of carbon fiber composites. Here, three parameters that may affect the detection, namely, scanning direction, scanning speed, and laser power, were identified by analyzing the line laser scanning thermography technique and characteristics of composite materials. A simulation model for the detection of composite materials using line laser scanning was established, and the maximum temperature difference between the center point of the defect surface and surface temperature of the defect-free area was selected as the characteristic quantity for detection. The influence of the above parameters on detection was analyzed, and the relationship between the laser power, scanning speed, and detection was fitted. Based on this, the principle of parameter selection considering detection efficiency during the experiment is summarized.
-
表 1 模型材料参数
Table 1. Model material parameters
Properties CFRP Air(25℃) Density ρ/(kg/m3) 1536 1.186 Specific heat capacity c/[J/(kg·K)] 865 1005 Thermal conductivity k/[W/(m·K)] 4.2(kx) 0.0261 0.56(ky) 0.56(kz) 表 2 激光扫描功率和最大温差数据
Table 2. Data of laser scanning power and ΔTmax
Laser scanning power /W Maximum temperature difference ΔTmax/℃ Original value Normalized value (x) Original value Normalized value (y) 10 0.3333 6.921 0.2991 14 0.4667 9.916 0.4285 20 0.6667 14.652 0.6332 24 0.8 18.521 0.8004 30 1 23.139 1 表 3 激光扫描速度和最大温差数据
Table 3. Data of laser scanning speeds and ΔTmax
Laser scanning speeds Maximum temperature difference ΔTmax Original value Normalized value x Original value Normalized value y 5 0.1 14.652 1 10 0.2 7.655 0.5225 20 0.4 3.849 0.2627 40 0.8 1.938 0.1323 50 1 1.415 0.0966 -
[1] 张晓虎, 孟宇, 张炜. 碳纤维增强复合材料技术发展现状及趋势[J]. 纤维复合材料, 2004(1): 50-53. https://www.cnki.com.cn/Article/CJFDTOTAL-QWFC200401015.htmZHANG Xiaohu, MENG Yu, ZHANG Wei. The state of the art and trend of carbon fiber reinforced composites[J]. Fiber Composite, 2004(1): 50-53. https://www.cnki.com.cn/Article/CJFDTOTAL-QWFC200401015.htm [2] 杨乃斌, 梁伟. 大型民机机体结构用复合材料分析[J]. 航空制造技术, 2009(5): 68-70. doi: 10.3969/j.issn.1671-833X.2009.05.013YANG Naibin, LIANG Wei. Analysis on composite material used on airframe structure of large civil aircraft[J]. Aeronautical Manufacturing Technology, 2009(5): 68-70. doi: 10.3969/j.issn.1671-833X.2009.05.013 [3] 王扬, 李科, 刘俊岩. CFRP复合材料层板缺陷的红外热波成像检测方法[J]. 航空制造技术, 2016(4): 36-42. https://www.cnki.com.cn/Article/CJFDTOTAL-HKGJ201604008.htmWANG Yang, LI Ke, LIU Junyan. Nondestructive testing and evaluation(NDT & E) for CFRP laminate with subsurface defects using infrared thermal wave imaging[J]. Aeronautical Manufacturing Technology, 2016(4): 36-42. https://www.cnki.com.cn/Article/CJFDTOTAL-HKGJ201604008.htm [4] 张富均, 戴宁, 王宏涛, 等. 相控阵超声CFRP缺陷三维成像研究[J]. 机械设计与制造工程, 2022(4): 26-32. https://www.cnki.com.cn/Article/CJFDTOTAL-JXZZ202204003.htmZHANG Fujun, DAI Ning, WANG Hongtao, et al. Three-dimensional imaging of phased array ultrasonic CFRP defects[J]. Machine Design and Manufacturing Engineering, 2022(4): 26-32. https://www.cnki.com.cn/Article/CJFDTOTAL-JXZZ202204003.htm [5] 徐笑娟. 基于涡流法的碳纤维复合材料电磁建模、表征及损伤检测[D]. 南京: 南京航空航天大学, 2019.XU Xiaojuan. Electromagnetic Modeling, Characterizing and Damage Detection of Carbon Fiber Reinforced Polymer using Eddy Current Method[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019. [6] 杨玉娥, 闫天婷, 任保胜. 复合材料中碳纤维方向和弯曲缺陷的微波检测[J]. 航空材料学报, 2015(6): 91-96. https://www.cnki.com.cn/Article/CJFDTOTAL-HKCB201506015.htmYANG Yue, YAN Tianting, REN Baosheng. Microwave evaluation of direction and bending defect of carbon fiber in composite material[J]. Journal of Aeronautical Materials, 2015(6): 91-96. https://www.cnki.com.cn/Article/CJFDTOTAL-HKCB201506015.htm [7] Masashi Ishikawa, Masaki Ando, Masashi Koyama, et al. Active thermographic inspection of carbon fiber reinforced plastic laminates using laser scanning heating[J]. Composite Structures, 2019, 209: 515-522. doi: 10.1016/j.compstruct.2018.10.113 [8] Fariba Khodayar, Fernando Lopez, Clemente Ibarra, et al. Optimization of the inspection of large composite materials using robotized line scan thermography[J]. Nondestructive Eval, 2017, 36: 32-46. [9] Divyashree Nayaka, Vandana Rameshb, Augustin, et al. Laser scanning based methodology for on-line detection of inclusion in prepreg based composite aircraft manufacturing[J]. Materials Today: Proceedings, 2020, 24: 591-600. [10] 江海军, 陈力, 张淑仪. 激光扫描红外热波成像技术在无损检测中的应用[J]. 无损检测, 2014, 36(12): 20-22, 27. https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC201412007.htmJIANG Haijun, CHEN Li, ZHANG Shuyi. Applications of laser scanning infrared thermography for nondestructive testing[J]. Nondestructive Testing, 2014, 36(12): 20-22, 27. https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC201412007.htm [11] 汪权, 张志杰, 陈昊泽, 等. 线激光扫描的碳纤维复合材料表面损伤研究[J]. 激光与红外, 2022, 52(3): 458-464. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW202203023.htmWANG Quan, ZHANG Zhijie, CHEN Haoze, et al. Study on surface damage of carbon fiber composites based on line laser scanning[J]. Laser & Infrared, 2022, 52(3): 458-464. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW202203023.htm [12] 何志艺. 碳纤维复合材料联动扫描激光热成像缺陷检测技术研究[D]. 长沙: 湖南大学, 2021.HE Zhiyi. Research on Joint Scanning Laser Infrared Thermography Defect Detection Technology of Carbon Fiber Reinforced Polymer Material[D]. Changsha: Hunan University, 2021. [13] Raitsin A M. A new integral characteristic of the degree of difference of the spatial distribution of a laser beam from a Gaussian distribution[J]. Measurement Techniques, 2011, 54(2): 162-169. [14] LI T, Almond D P, Rees D a S. Crack imaging by scanning laser-line thermography and laser-spot thermography[J]. Measurement Science Technology, 2011, 22(3): 407-414. [15] Dodd C V, Pate J R, Deeds W E. Eddy-current inversion of flaw data from flat-bottomed holes[J]. NDT & E International, 1989, 30(3): 305-312. -